Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GAN-based Massive MIMO Channel Model Trained on Measured Data (2403.05321v1)

Published 8 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: Wireless channel models are a commonly used tool for the development of wireless telecommunication systems and standards. The currently prevailing geometry-based stochastic channel models (GSCMs) were manually specified for certain environments in a manual process requiring extensive domain knowledge, on the basis of channel measurement campaigns. By taking into account the stochastic distribution of certain channel properties like Rician k-factor, path loss or delay spread, they model the distribution of channel realizations. Instead of this manual process, a generative machine learning model like a generative adversarial network (GAN) may be used to automatically learn the distribution of channel statistics. Subsequently, the GAN's generator may be viewed as a channel model that can replace conventional stochastic or raytracer-based models. We propose a GAN architecture for a massive MIMO channel model, and train it on measurement data produced by a distributed massive MIMO channel sounder.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com