Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal Non-Kochen-Specker Sets and a Lower Bound on the Size of Kochen-Specker Sets (2403.05230v2)

Published 8 Mar 2024 in quant-ph, cs.DM, and math.MG

Abstract: The challenge of determining bounds for the minimal number of vectors in a three-dimensional Kochen-Specker (KS) set has captivated the quantum foundations community for decades. This paper establishes a weak lower bound of 10 vectors, which does not surpass the current best-known bound of 24 vectors. By exploring the complementary concept of large non-KS sets and employing a probability argument independent of the graph structure of KS sets, we introduce a novel technique that could be applied in the future to derive tighter bounds. Additionally, we highlight an intriguing connection to a generalisation of the moving sofa problem in navigating a right-angled hallway on the surface of a two-dimensional sphere.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. S. Kochen and E. P. Specker, “The Problem of Hidden Variables in Quantum Mechanics,” Journal of Mathematics and Mechanics 17 (1967) 59–87.
  2. M. Howard, J. Wallman, V. Veitch, and J. Emerson, “Contextuality supplies the ‘magic’ for quantum computation,” Nature 510 (June, 2014) 351–355, 1401.4174.
  3. R. Raussendorf, “Contextuality in measurement-based quantum computation,” Physical Review A 88 (Aug., 2013) 022322, 0907.5449.
  4. S. Abramsky, R. S. Barbosa, and S. Mansfield, “Contextual Fraction as a Measure of Contextuality,” Physical Review Letters 119 (Aug., 2017) 050504, 1705.07918.
  5. R. W. Spekkens, “Contextuality for Preparations, Transformations, and Unsharp Measurements,” Physical Review A 71 (2005), no. 5, 052108, 0406166.
  6. S. Abramsky and A. Brandenburger, “The sheaf-theoretic structure of non-locality and contextuality,” New Journal of Physics 13 (Nov., 2011) 113036, 1102.0264.
  7. E. N. Dzhafarov, J. V. Kujala, and V. H. Cervantes, “Contextuality-by-Default: A Brief Overview of Ideas, Concepts, and Terminology,” in Quantum Interaction, H. Atmanspacher, T. Filk, and E. Pothos, eds., pp. 12–23. Springer International Publishing, Cham, 2016. 1504.00530.
  8. A. Cabello, S. Severini, and A. Winter, “Graph-Theoretic Approach to Quantum Correlations,” Physical Review Letters 112 (Jan., 2014) 040401, 1401.7081.
  9. A. Acin, T. Fritz, A. Leverrier, and A. B. Sainz, “A Combinatorial Approach to Nonlocality and Contextuality,” Commun. Math. Phys. 334 (2015) 533–628, 1212.4084.
  10. J. Conway and S. Kochen, “The Strong Free Will Theorem,” Notices of the AMS 56 (2009), no. 2, 226–232, 0807.3286.
  11. J. Conway and S. Kochen, “The free will theorem,” Foundations of Physics 36 (2006) 1441–1473, 0604079.
  12. S. Uijlen and B. Westerbaan, “A Kochen-Specker system has at least 22 vectors,” New Generation Computing 34 (2016), no. 1-2, 3–23, 1412.8544.
  13. F. Arends, J. Ouaknine, and C. W. Wampler, “On searching for small Kochen-Specker vector systems,” in Graph-Theoretic Concepts in Computer Science: 37th International Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011. Revised Papers 37, pp. 23–34, Springer. 2011. 1111.3301.
  14. C. Isham, Lectures On Quantum Theory Mathematical And Structural Foundations. Allied Publ., 2001.
  15. R. Clifton, “Getting contextual and nonlocal elements-of-reality the easy way,” American Journal of Physics 61 (May, 1993) 443–447.
  16. R. Ramanathan, M. Rosicka, K. Horodecki, S. Pironio, M. Horodecki, and P. Horodecki, “Gadget structures in proofs of the Kochen-Specker theorem,” Quantum 4 (2020) 308, 1807.00113.
  17. M. Pavičić, J.-P. Merlet, B. McKay, and N. D. Megill, “Kochen–Specker vectors,” Journal of Physics A: Mathematical and General 38 (2005), no. 7, 1577, 0409014.
  18. A. Peres, “Two simple proofs of the Kochen-Specker theorem,” Journal of Physics A: Mathematical and General 24 (feb, 1991) L175.
  19. A. W. Simmons, “How (maximally) contextual is quantum mechanics?,” Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky (2020) 505–519.
  20. H. S. Witsenhausen, “Spherical sets without orthogonal point pairs,” The American Mathematical Monthly 81 (1974), no. 10, 1101–1102.
  21. G. Kalai and R. Wilson, “How large can a spherical set without two orthogonal vectors be,” Combinatorics and more (weblog) (2009).
  22. E. DeCorte and O. Pikhurko, “Spherical sets avoiding a prescribed set of angles,” International Mathematics Research Notices 2016 (2016), no. 20, 6095–6117, 1502.05030.
  23. A. Perez, “On Generalizations of the Double Cap Conjecture,” 2019. Available at https://math.mit.edu/research/highschool/rsi/documents/2019Perez.pdf.
  24. J. O’Rourke, “Open Problems from CCCG 2015.,” in CCCG. 2015.
  25. L. Moser, “Moving furniture through a hallway,” SIAM Review 8 (1966), no. 3, 381.
  26. J. L. Gerver, “On moving a sofa around a corner,” Geometriae Dedicata 42 (1992), no. 3, 267–283.
  27. Y. Kallus and D. Romik, “Improved upper bounds in the moving sofa problem,” Advances in Mathematics 340 (2018) 960–982, 1706.06630.
  28. I. Stewart, Another fine math you’ve got me into… Courier Corporation, 2004.
  29. D. Romik, “Differential equations and exact solutions in the moving sofa problem,” Experimental Mathematics 27 (2018), no. 3, 316–330, 1606.08111.

Summary

We haven't generated a summary for this paper yet.