Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BNSR-Invariants of Surface Houghton Groups (2403.04941v1)

Published 7 Mar 2024 in math.GT and math.GR

Abstract: The surface Houghton groups $\mathcal{H}{n}$ are a family of groups generalizing Houghton groups $H_n$, which are constructed as asymptotically rigid mapping class groups. We give a complete computation of the BNSR-invariants $\Sigma{m}(P\mathcal{H}{n})$ of their intersection with the pure mapping class group. To do so, we prove that the associated Stein--Farley cube complex is CAT(0), and we adapt Zaremsky's method for computing the BNSR-invariants of the Houghton groups. As a consequence, we give a criterion for when subgroups of $H_n$ and $P\mathcal{H}_{n}$ having the same finiteness length as their parent group are finite index. We also discuss the failure of some of these groups to be co-Hopfian.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. Marie Abadie. CAT(0) Cube Complexes and Asymptotically Rigid Mapping Class Groups. Master’s thesis, École Polytechnique Fédérale de Lausanne, 2024.
  2. Surface Houghton groups. Mathematische Annalen, 2023.
  3. Isomorphisms and commensurability of surface Houghton groups, 2023.
  4. Big Mapping Class Groups and the Co-Hopfian Property. Michigan Mathematical Journal, pages 1 – 29, 2023.
  5. The First Integral Cohomology of Pure Mapping Class Groups. International Mathematics Research Notices, 11 2017.
  6. A geometric invariant of discrete groups. Inventiones mathematicae, 90:451–478, 1987.
  7. R. Bieri and B. Renz. Valuations on free resolutions and higher geometric invariants of groups. Commentarii Mathematici Helvetici, 63:464–497, 1988.
  8. Kenneth S. Brown. Finiteness properties of groups. Journal of Pure and Applied Algebra, 44(1):45–75, 1987.
  9. Victor Chepoi. Graphs of Some CAT(0) Complexes. Advances in Applied Mathematics, 24(2):125–179, 2000.
  10. Yves Cornulier. Gradings on Lie algebras, systolic growth, and cohopfian properties of nilpotent groups. Bulletin de la Société mathématique de France, 144:693–744, 01 2016.
  11. F. Degenhardt. Endlichkeitseigenschaften gewisser Gruppen von Zöpfen unendlicher Ordnung. PhD thesis, Frankfurt, 2000.
  12. L. Funar. Braided Houghton Groups as Mapping Class Groups. Annales Sci. Univ. ”A.I.Cuza”, pages 229–240, 2007.
  13. Asymptotically rigid mapping class groups I: Finiteness properties of braided Thompson’s and Houghton’s groups. Geometry & Topology, 26(3):1385 – 1434, 2020.
  14. Asymptotically rigid mapping class groups II: strand diagrams and nonpositive curvature. 2021.
  15. C. H. Houghton. The first cohomology of a group with permutation module coefficients. Arch. Math, pages 254–258, 1978.
  16. Sang Rae Lee. Geometry of Houghton’s Groups. PhD thesis, University of Oklahoma, 2012.
  17. Algebraic and topological properties of big mapping class groups. Algebraic & Geometric Topology, 18(7):4109 – 4142, 2018.
  18. B. Renz. Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen. PhD thesis, Frankfurt, 1988.
  19. Matthew C. B. Zaremsky. On the ΣΣ\Sigmaroman_Σ-Invariants of Generalized Thompson Groups and Houghton Groups. International Mathematics Research Notices, 2017(19):5861–5896, 08 2016.
  20. Matthew C. B. Zaremsky. The BNSR-invariants of the Houghton groups, concluded. Proceedings of the Edinburgh Mathematical Society, 63(1):1–11, 2020.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com