Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A comparison of continuous and pulsed sideband cooling on an electric quadrupole transition (2403.04891v1)

Published 7 Mar 2024 in physics.atom-ph

Abstract: Sideband cooling enables preparation of trapped ion motion near the ground state and is essential for many scientific and technological applications of trapped ion devices. Here, we study the efficiency of continuous and pulsed sideband cooling using both first- and second-order sidebands applied to an ion where the motion starts outside the Lamb-Dicke regime. We find that after optimizing these distinct cooling methods, pulsed and continuous cooling achieve similar results based on simulations and experiments with a ${40}$Ca$+$ ion. We consider optimization of both average phonon number $\overline{n}$ and population in the ground state. We also demonstrate the disparity between $\overline{n}$ as measured by the sideband ratio method of trapped ion thermometry and the $\overline{n}$ found by averaging over the ion's motional state distribution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. F. Wolf and P. O. Schmidt, Quantum sensing of oscillating electric fields with trapped ions, Measurement: Sensors 18, 100271 (2021).
  2. L. Qi, E. C. Reed, and K. R. Brown, Adiabatically controlled motional states of a cao+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT and ca+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT trapped-ion chain cooled to the ground state, Phys. Rev. A 108, 013108 (2023).
  3. R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453, 1008–1015 (2008).
  4. M. Kajita and Y. Moriwaki, Proposed detection of variation in mp/me using a vibrational transition frequency of a cah+ ion, Journal of Physics B: Atomic, Molecular and Optical Physics 42, 154022 (2009).
  5. D. Kielpinski, C. Monroe, and D. J. Wineland, Architecture for a large-scale ion-trap quantum computer., Nature 417, 709 (2002).
  6. S. A. Moses and et. al., A race-track trapped-ion quantum processor, Phys. Rev. X 13, 041052 (2023).
  7. G. Morigi, J. Eschner, and C. H. Keitel, Ground state laser cooling using electromagnetically induced transparency, Phys. Rev. Lett. 85, 4458 (2000).
  8. Q. Wu, Y. Shi, and J. Zhang, Continuous raman sideband cooling beyond the lamb-dicke regime in a trapped ion chain, Phys. Rev. Res. 5, 023022 (2023).
  9. W. C. Campbell and E. R. Hudson, Dipole-phonon quantum logic with trapped polar molecular ions, Phys. Rev. Lett. 125, 120501 (2020).
  10. D. J. Wineland, R. E. Drullinger, and F. L. Walls, Radiation-pressure cooling of bound resonant absorbers, Phys. Rev. Lett. 40, 1639 (1978).
  11. J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091 (1995).
  12. A. Sørensen and K. Mølmer, Quantum computation with ions in thermal motion, Phys. Rev. Lett. 82, 1971 (1999).
  13. J. Javanainen and S. Stenholm, Laser cooling of trapped particles iii: The lamb-dicke limit, Applied physics 24, 151–162 (1981).
  14. J. R. Johansson, P. Nation, and F. Nori, Qutip 2: A python framework for the dynamics of open quantum systems, Comp. Phys. Comm. 184 (2013).
Citations (2)

Summary

We haven't generated a summary for this paper yet.