Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GreenBytes: Intelligent Energy Estimation for Edge-Cloud (2403.04665v2)

Published 7 Mar 2024 in cs.DC, cs.ET, and cs.NI

Abstract: This study investigates the application of advanced machine learning models, specifically Long Short-Term Memory (LSTM) networks and Gradient Booster models, for accurate energy consumption estimation within a Kubernetes cluster environment. It aims to enhance sustainable computing practices by providing precise predictions of energy usage across various computing nodes. Through meticulous analysis of model performance on both master and worker nodes, the research reveals the strengths and potential applications of these models in promoting energy efficiency. The LSTM model demonstrates remarkable predictive accuracy, particularly in capturing dynamic computing workloads over time, evidenced by low mean squared error (MSE) rates and the ability to closely track actual energy consumption trends. Conversely, the Gradient Booster model showcases robustness and adaptability across different computational environments, despite slightly higher MSE values. The study underscores the complementary nature of these models in advancing sustainable computing practices, suggesting their integration into energy management systems could significantly enhance environmental sustainability in technology operations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. A. Jagannadharao, N. Beckage, D. Nafus, and S. Chamberlin, “Timeshifting strategies for carbon-efficient long-running large language model training,” Innovations in Systems and Software Engineering, pp. 1–15, 2023.
  2. K. Kassai, S. Ghosh, and A. Dagiuklas, “Evolution of orchestration towards 5g,” Journal of Communication, vol. 14, no. 12, 2019.
  3. E. Ahvar, A.-C. Orgerie, and A. Lebre, “Estimating energy consumption of cloud, fog, and edge computing infrastructures,” IEEE Transactions on Sustainable Computing, vol. 7, no. 2, pp. 277–288, 2022.
  4. V. Perifanis, N. Pavlidis, S. F. Yilmaz, F. Wilhelmi, E. Guerra, M. Miozzo, P. S. Efraimidis, P. Dini, and R.-A. Koutsiamanis, “Towards energy-aware federated traffic prediction for cellular networks,” 2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), pp. 93–100, 2023.
  5. S. R. Swain, A. Parashar, A. K. Singh, and C. Nan Lee, “An energy efficient virtual machine placement scheme for intelligent resource management at cloud data center,” in 2023 OITS International Conference on Information Technology (OCIT), pp. 65–70, 2023.
  6. F. Wu, Y. Chen, X. Chen, W. Fan, and Y. Liu, “An adaptive dual prediction scheme based on edge intelligence,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9481–9493, 2020.
  7. C. Bazil Wilfred, S. M. George, S. Sivaranjani, S. Selvan, J. M. Feros Khan, and D. Beulah David, “An intelligent energy management system with an efficient iot based deep learning framework,” in 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), pp. 33–37, 2022.
  8. K. Qazi and I. Aizenberg, “Cloud datacenter workload prediction using complex-valued neural networks,” in 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), pp. 315–321, 2018.
  9. R. Lu, R. Bai, R. Li, L. Zhu, M. Sun, F. Xiao, D. Wang, H. Wu, and Y. Ding, “A novel sequence-to-sequence-based deep learning model for multistep load forecasting,” IEEE Transactions on Neural Networks and Learning Systems, 2024.
  10. W. Lu, L. Liang, B. Kong, B. Li, and Z. Zhu, “Ai-assisted knowledge-defined network orchestration for energy-efficient data center networks,” IEEE Communications Magazine, vol. 58, no. 1, pp. 86–92, 2020.
  11. M. Rätz, P. Henkel, P. Stoffel, R. Streblow, and D. Müller, “Identifying the validity domain of machine learning models in building energy systems,” Energy and AI, vol. 15, p. 100324, 2024.
  12. M. Khazen, S. Amor, K. Kougblenou, A. Gogonel, and L. Cucu-Grosjean, “Work in progress: Towards a statistical worst-case energy consumption model,” in 2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS), (Los Alamitos, CA, USA), pp. 333–336, IEEE Computer Society, may 2023.
  13. P. Patros, J. Spillner, A. V. Papadopoulos, B. Varghese, O. Rana, and S. Dustdar, “Toward sustainable serverless computing,” IEEE Internet Computing, vol. 25, no. 6, pp. 42–50, 2021.
  14. Kepler: A Framework to Calculate the Energy Consumption of Containerized Applications, 2023.
  15. F. Hao, G. Pang, Z. Pei, K. Qin, Y. Zhang, and X. Wang, “Virtual machines scheduling in mobile edge computing: A formal concept analysis approach,” IEEE Transactions on Sustainable Computing, vol. 5, no. 3, pp. 319–328, 2020.
  16. KubeHICE: Performance-aware Container Orchestration on Heterogeneous-ISA Architectures in Cloud-Edge Platforms, 2021.
  17. H. Wu, M. Tömösközi, R. Bassoli, J. Zhang, and F. H. P. Fitzek, “Experimental proof of the energy advantage of in-network intelligence,” in 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1–6, 2022.
  18. linux.die.net, “mpstat(1) - linux man page,” 2024. Accessed: 06/02/2024.
  19. I. Priyadarshini, S. Sahu, R. Kumar, and D. Taniar, “A machine-learning ensemble model for predicting energy consumption in smart homes,” Internet of Things, vol. 20, p. 100636, 2022.
  20. H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl: memory power estimation and capping,” in Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED ’10, (New York, NY, USA), p. 189–194, Association for Computing Machinery, 2010.
  21. T. Kubernetes, “Kubernetes,” Kubernetes. Retrieved May, vol. 24, p. 2019, 2019.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets