A Coreset for Approximate Furthest-Neighbor Queries in a Simple Polygon (2403.04513v1)
Abstract: Let $\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set of $n$ points inside $\mathcal{P}$. We prove that there exists, for any $\varepsilon>0$, a set $\mathcal{C} \subset P$ of size $O(1/\varepsilon2)$ such that the following holds: for any query point $q$ inside the polygon $\mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in $\mathcal{C}$ is at least $1-\varepsilon$ times the geodesic distance to its further neighbor in $P$. Thus the set $\mathcal{C}$ can be used for answering $\varepsilon$-approximate furthest-neighbor queries with a data structure whose storage requirement is independent of the size of $P$. The coreset can be constructed in $O\left(\frac{1}{\varepsilon} \left( n\log(1/\varepsilon) + (n+m)\log(n+m)\right) \right)$ time.
- Approximating extent measures of points. J. ACM, 51(4):606–635, 2004. doi:10.1145/1008731.1008736.
- Robust shape fitting via peeling and grating coresets. In Proc. 1th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 182–191, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109579.
- TSP in a Simple Polygon. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms (ESA 2022), volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2022.5.
- The furthest-site geodesic Voronoi diagram. Discret. Comput. Geom., 9:217–255, 1993. doi:10.1007/BF02189321.
- Farthest line segment Voronoi diagrams. Inf. Process. Lett., 100(6):220–225, 2006. doi:10.1016/j.ipl.2006.07.008.
- Piecewise-linear farthest-site Voronoi diagrams. In 32nd International Symposium on Algorithms and Computation (ISAAC), volume 212 of LIPIcs, pages 30:1–30:11, 2021. doi:10.4230/LIPIcs.ISAAC.2021.30.
- Sergei Bespamyatnikh. Dynamic algorithms for approximate neighbor searching. In Proceedings of the 8th Canadian Conference on Computational Geometry, pages 252–257, 1996. URL: http://www.cccg.ca/proceedings/1996/cccg1996_0042.pdf.
- Farthest-polygon Voronoi diagrams. Comput. Geom., 44(4):234–247, 2011. doi:10.1016/j.comgeo.2010.11.004.
- Computational Geometry: Algorithms and Applications (3rd Edition). Springer, 2008. doi:10.1007/978-3-540-77974-2.
- Reductions among high dimensional proximity problems. In Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, pages 769–778, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365776.
- Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci., 39(2):126–152, 1989. doi:10.1016/0022-0000(89)90041-X.
- Piotr Indyk. Better algorithms for high-dimensional proximity problems via asymmetric embeddings. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 539–545, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644200.
- Furthest site abstract Voronoi diagrams. Int. J. Comput. Geom. Appl., 11(6):583–616, 2001. doi:10.1142/S0218195901000663.
- Joseph S. B. Mitchell. Geometric shortest paths and network optimization. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages 633–701. North Holland / Elsevier, 2000. doi:10.1016/b978-044482537-7/50016-4.
- The geodesic farthest-point Voronoi diagram in a simple polygon. Algorithmica, 82(5):1434–1473, 2020. doi:10.1007/s00453-019-00651-z.
- Approximate furthest neighbor with application to annulus query. Inf. Syst., 64:152–162, 2017. doi:10.1016/j.is.2016.07.006.
- The visibility complex. Int. J. Comput. Geom. Appl., 6(3):279–308, 1996. doi:10.1142/S0218195996000204.
- Computing the geodesic center of a simple polygon. Discrete & Computational Geometry, 4(6):611–626, Dec 1989. doi:10.1007/BF02187751.
- Raimund Seidel. On the number of faces in higher-dimensional Voronoi diagrams. In Proceedings of the Third Annual Symposium on Computational Geometry, pages 181–185, 1987. doi:10.1145/41958.41977.
- Jack Snoeyink. Point location. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry (3rd edition), pages 767–785. Chapman and Hall/CRC, 2017. doi:10.1201/9781315119601.
- Subhash Suri. Computing geodesic furthest neighbors in simple polygons. Journal of Computer and System Sciences, 39(2):220–235, 1989. URL: https://www.sciencedirect.com/science/article/pii/0022000089900457, doi:10.1016/0022-0000(89)90045-7.
- Godfried Toussaint. An optimal algorithm for computing the relative convex hull of a set of points in a polygon. In Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2, pages 853–856, 1986.
- Haitao Wang. An optimal deterministic algorithm for geodesic farthest-point voronoi diagrams in simple polygons. Discrete & Computational Geometry, 70(2):426–454, Sep 2023. doi:10.1007/s00454-022-00424-6.