Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RoboKube: Establishing a New Foundation for the Cloud Native Evolution in Robotics (2403.04440v1)

Published 7 Mar 2024 in cs.RO

Abstract: Cloud native technologies have been observed to expand into the realm of Internet of Things (IoT) and Cyber-physical Systems, of which an important application domain is robotics. In this paper, we review the cloudification practice in the robotics domain from both literature and industrial perspectives. We propose RoboKube, an adaptive framework that is based on the Kubernetes (K8s) ecosystem to set up a common platform across the device-cloud continuum for the deployment of cloudified Robotic Operating System (ROS) powered applications, to facilitate the cloud native evolution in robotics. We examine the process of modernizing ROS applications using cloud-native technologies, focusing on both the platform and application perspectives. In addition, we address the challenges of networking setups for heterogeneous environments. This paper intends to serves as a guide for developers and researchers, offering insights into containerization strategies, ROS node distribution and clustering, and deployment options. To demonstrate the feasibility of our approach, we present a case study involving the cloudification of a teleoperation testbed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. CNCF, “CNCF cloud native definition v1.0,” 2018. [Online]. Available: https://github.com/cncf/toc/blob/main/DEFINITION.md
  2. S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, may 2022.
  3. G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges and applications,” IEEE Network, vol. 26, no. 3, pp. 21–28, 2012.
  4. B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on cloud robotics and automation,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 398–409, 2015.
  5. A. Sorokin, D. Berenson, S. S. Srinivasa, and M. Hebert, “People helping robots helping people: Crowdsourcing for grasping novel objects,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 2117–2122.
  6. B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg, “Cloud-based robot grasping with the google object recognition engine,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4263–4270.
  7. D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning framework that learns from experience,” in 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 3671–3678.
  8. L. Riazuelo, M. Tenorth, D. Di Marco, M. Salas, D. Gálvez-López, L. Mösenlechner, L. Kunze, M. Beetz, J. D. Tardós, L. Montano, and J. M. M. Montiel, “Roboearth semantic mapping: A cloud enabled knowledge-based approach,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 432–443, 2015.
  9. G. Mehrooz, E. Ebeid, and P. Schneider-Kamp, “System design of an open-source cloud-based framework for internet of drones application,” in 2019 22nd Euromicro Conference on Digital System Design (DSD), 2019, pp. 572–579.
  10. B. Xu and J. Bian, “A cloud robotic application platform design based on the microservices architecture,” in Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System, ser. CCRIS ’20.   New York, NY, USA: Association for Computing Machinery, 2021, p. 13–18.
  11. A. S. Seisa, S. G. Satpute, and G. Nikolakopoulos, “A kubernetes-based edge architecture for controlling the trajectory of a resource-constrained aerial robot by enabling model predictive control,” in 2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC), 2022, pp. 290–295.
  12. A. Santi Seisa, S. Gajanan Satpute, and G. Nikolakopoulos, “Comparison between docker and kubernetes based edge architectures for enabling remote model predictive control for aerial robots,” in IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 2022, pp. 1–6.
  13. A. B. M. Pereira and G. S. Bastos, “Rosremote, using ros on cloud to access robots remotely,” in 2017 18th International Conference on Advanced Robotics (ICAR), 2017, pp. 284–289.
  14. J. Z. Lim and D. W.-K. Ng, “Cloud based implementation of ros through vpn,” in 2019 7th International Conference on Smart Computing & Communications (ICSCC), 2019, pp. 1–5.
  15. G. Damigos, T. Lindgren, and G. Nikolakopoulos, “Toward 5g edge computing for enabling autonomous aerial vehicles,” IEEE Access, vol. 11, pp. 3926–3941, 2023.
  16. J. Ichnowski, K. Chen, K. Dharmarajan, S. Adebola, M. Danielczuk, V. Mayoral-Vilches, N. Jha, H. Zhan, E. LLontop, D. Xu, C. Buscaron, J. Kubiatowicz, I. Stoica, J. Gonzalez, and K. Goldberg, “Fogros2: An adaptive platform for cloud and fog robotics using ros 2,” 2023.
  17. K. Chen, R. Hoque, K. Dharmarajan, E. LLontop, S. Adebola, J. Ichnowski, J. Kubiatowicz, and K. Goldberg, “Fogros2-sgc: A ros2 cloud robotics platform for secure global connectivity,” 2023.
  18. B. Lampe, L. Reiher, L. Zanger, T. Woopen, R. van Kempen, and L. Eckstein, “RobotKube: Orchestrating large-scale cooperative multi-robot systems with kubernetes and ros,” 2023.
  19. F. Lumpp, M. Panato, F. Fummi, and N. Bombieri, “A container-based design methodology for robotic applications on kubernetes edge-cloud architectures,” in 2021 Forum on specification & Design Languages (FDL), 2021, pp. 01–08.
  20. “ROS 2 and Kubernetes basics,” 2020. [Online]. Available: https://ubuntu.com/blog/exploring-ros-2-with-kubernetes
  21. F. Tomoya and G. Feng, “Kubernetes robotics edge cluster system,” 2021. [Online]. Available: https://www.youtube.com/watch?v=rqyLd_AhXak
  22. L. Yu and H. H. Aitor, “Enabling 5g qos configuration capabilities for iot applications on container orchestration platform,” in 2023 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), 2023.

Summary

We haven't generated a summary for this paper yet.