Memetic Differential Evolution Methods for Semi-Supervised Clustering (2403.04322v2)
Abstract: In this paper, we propose an extension for semi-supervised Minimum Sum-of-Squares Clustering (MSSC) problems of MDEClust, a memetic framework based on the Differential Evolution paradigm for unsupervised clustering. In semi-supervised MSSC, background knowledge is available in the form of (instance-level) "must-link" and "cannot-link" constraints, each of which indicating if two dataset points should be associated to the same or to a different cluster, respectively. The presence of such constraints makes the problem at least as hard as its unsupervised version and, as a consequence, some framework operations need to be carefully designed to handle this additional complexity: for instance, it is no more true that each point is associated to its nearest cluster center. As far as we know, our new framework, called S-MDEClust, represents the first memetic methodology designed to generate a (hopefully) optimal feasible solution for semi-supervised MSSC problems. Results of thorough computational experiments on a set of well-known as well as synthetic datasets show the effectiveness and efficiency of our proposal.
- doi:10.1007/BF02614317.
- doi:10.1007/s10994-009-5103-0.
- doi:10.2307/2346830.
- doi:10.1109/TIT.1982.1056489.
- doi:10.1016/S0031-3203(02)00060-2.
- doi:10.1016/0031-3203(91)90097-O.
- doi:10.1016/0031-3203(95)00022-R.
- doi:10.1016/S0031-3203(99)00137-5.
- doi:10.1016/S0167-8655(97)00122-0.
- doi:10.1007/s10898-014-0171-5.
- doi:10.1016/j.patcog.2015.11.011.
- doi:10.1016/j.patcog.2018.12.022.
- doi:10.1016/j.patcog.2021.107849.
- doi:10.1023/A:1008202821328.
- doi:10.1137/1.9781611972788.3.
- doi:10.1016/j.cor.2021.105299.
- doi:10.1145/1148170.1148242.
- doi:10.1016/j.ipm.2008.03.001.
- doi:10.1007/978-3-030-61527-7_4.
- doi:10.1109/IEEM45057.2020.9309775.
- doi:10.1137/1.9781611972740.31.
- doi:10.1137/1.9781611972757.13.
- doi:10.1137/1.9781611974348.33.
- doi:10.1016/j.cor.2020.104979.
- doi:10.48550/arXiv.2212.14437.
- doi:10.1007/s10618-008-0104-3.
- doi:10.1007/s10107-010-0349-7.
- doi:10.1016/j.artint.2015.05.006.
- doi:10.3233/978-1-61499-672-9-462.
- doi:10.1016/j.cor.2022.105958.
- doi:10.1016/j.ins.2022.05.035.
- doi:10.1007/s10898-021-01047-6.
- doi:10.1145/1273496.1273522.
- doi:10.1016/j.cor.2013.09.010.
- doi:10.1002/nav.3800020109.
- doi:10.1142/9789814324700_0104.
- doi:10.1007/978-3-642-24425-4_30.
- doi:10.1007/BF01908075.
- doi:10.1109/TSMC.1987.4309069.
- doi:10.1016/j.eswa.2023.121953.
- doi:10.1007/s101070100263.