Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProMISe: Promptable Medical Image Segmentation using SAM (2403.04164v3)

Published 7 Mar 2024 in cs.CV and cs.AI

Abstract: With the proposal of the Segment Anything Model (SAM), fine-tuning SAM for medical image segmentation (MIS) has become popular. However, due to the large size of the SAM model and the significant domain gap between natural and medical images, fine-tuning-based strategies are costly with potential risk of instability, feature damage and catastrophic forgetting. Furthermore, some methods of transferring SAM to a domain-specific MIS through fine-tuning strategies disable the model's prompting capability, severely limiting its utilization scenarios. In this paper, we propose an Auto-Prompting Module (APM), which provides SAM-based foundation model with Euclidean adaptive prompts in the target domain. Our experiments demonstrate that such adaptive prompts significantly improve SAM's non-fine-tuned performance in MIS. In addition, we propose a novel non-invasive method called Incremental Pattern Shifting (IPS) to adapt SAM to specific medical domains. Experimental results show that the IPS enables SAM to achieve state-of-the-art or competitive performance in MIS without the need for fine-tuning. By coupling these two methods, we propose ProMISe, an end-to-end non-fine-tuned framework for Promptable Medical Image Segmentation. Our experiments demonstrate that both using our methods individually or in combination achieves satisfactory performance in low-cost pattern shifting, with all of SAM's parameters frozen.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. T. Shaharabany, A. Dahan, R. Giryes, and L. Wolf, “Autosam: Adapting sam to medical images by overloading the prompt encoder,” arXiv preprint arXiv:2306.06370, 2023.
  2. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
  3. K. Zhang and D. Liu, “Customized segment anything model for medical image segmentation,” arXiv preprint arXiv:2304.13785, 2023.
  4. Y. Li, M. Hu, and X. Yang, “Polyp-sam: Transfer sam for polyp segmentation,” arXiv preprint arXiv:2305.00293, 2023.
  5. J. Cheng, J. Ye, Z. Deng, J. Chen, T. Li, H. Wang, Y. Su, Z. Huang, J. Chen, L. Jiang et al., “Sam-med2d,” arXiv preprint arXiv:2308.16184, 2023.
  6. J. Wu, R. Fu, H. Fang, Y. Liu, Z. Wang, Y. Xu, Y. Jin, and T. Arbel, “Medical sam adapter: Adapting segment anything model for medical image segmentation,” arXiv preprint arXiv:2304.12620, 2023.
  7. J. N. Paranjape, N. G. Nair, S. Sikder, S. S. Vedula, and V. M. Patel, “Adaptivesam: Towards efficient tuning of sam for surgical scene segmentation,” arXiv preprint arXiv:2308.03726, 2023.
  8. T. Chen, L. Zhu, C. Ding, R. Cao, S. Zhang, Y. Wang, Z. Li, L. Sun, P. Mao, and Y. Zang, “Sam fails to segment anything?–sam-adapter: Adapting sam in underperformed scenes: Camouflage, shadow, and more,” arXiv preprint arXiv:2304.09148, 2023.
  9. J. Ma, Y. He, F. Li, L. Han, C. You, and B. Wang, “Segment anything in medical images,” Nature Communications, vol. 15, no. 1, p. 654, 2024.
  10. D. Cheng, Z. Qin, Z. Jiang, S. Zhang, Q. Lao, and K. Li, “Sam on medical images: A comprehensive study on three prompt modes,” arXiv preprint arXiv:2305.00035, 2023.
  11. T. Zhou, Y. Zhang, Y. Zhou, Y. Wu, and C. Gong, “Can sam segment polyps?” arXiv preprint arXiv:2304.07583, 2023.
  12. M. A. Mazurowski, H. Dong, H. Gu, J. Yang, N. Konz, and Y. Zhang, “Segment anything model for medical image analysis: an experimental study,” Medical Image Analysis, vol. 89, p. 102918, 2023.
  13. S. He, R. Bao, J. Li, P. E. Grant, and Y. Ou, “Accuracy of segment-anything model (sam) in medical image segmentation tasks,” arXiv preprint arXiv:2304.09324, 2023.
  14. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in European conference on computer vision.   Springer, 2020, pp. 213–229.
  15. B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is not all you need for semantic segmentation,” Advances in Neural Information Processing Systems, vol. 34, pp. 17 864–17 875, 2021.
  16. D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Pranet: Parallel reverse attention network for polyp segmentation,” in International conference on medical image computing and computer-assisted intervention.   Springer, 2020, pp. 263–273.
  17. J. Wang, Q. Huang, F. Tang, J. Meng, J. Su, and S. Song, “Stepwise feature fusion: Local guides global,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2022, pp. 110–120.
  18. D. Jha, P. Smedsrud, M. Riegler, P. Halvorsen, T. Lange, D. Johansen, and H. Johansen, “Kvasir-seg: A segmented polyp dataset,” arXiv: Image and Video Processing,arXiv: Image and Video Processing, Nov 2019.
  19. J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” Computerized Medical Imaging and Graphics, p. 99–111, Jul 2015. [Online]. Available: http://dx.doi.org/10.1016/j.compmedimag.2015.02.007
  20. J. Bernal, J. Sánchez, and F. Vilariño, “Towards automatic polyp detection with a polyp appearance model,” Pattern Recognition, p. 3166–3182, Sep 2012. [Online]. Available: http://dx.doi.org/10.1016/j.patcog.2012.03.002
  21. J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” International Journal of Computer Assisted Radiology and Surgery, p. 283–293, Mar 2014. [Online]. Available: http://dx.doi.org/10.1007/s11548-013-0926-3
  22. N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE transactions on medical imaging, vol. 35, no. 2, pp. 630–644, 2015.
  23. D. Vázquez, J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, A. M. López, A. Romero, M. Drozdzal, A. Courville et al., “A benchmark for endoluminal scene segmentation of colonoscopy images,” Journal of healthcare engineering, vol. 2017, 2017.
  24. F. Tang, Z. Xu, Q. Huang, J. Wang, X. Hou, J. Su, and J. Liu, “Duat: Dual-aggregation transformer network for medical image segmentation,” in Chinese Conference on Pattern Recognition and Computer Vision (PRCV).   Springer, 2023, pp. 343–356.
  25. N. C. F. Codella, D. Gutman, M. E. Celebi, B. Helba, M. A. Marchetti, S. W. Dusza, A. Kalloo, K. Liopyris, N. Mishra, H. Kittler, and A. Halpern, “Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic),” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Apr 2018. [Online]. Available: http://dx.doi.org/10.1109/isbi.2018.8363547
  26. P. Tschandl, C. Rosendahl, and H. Kittler, “The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Scientific Data, Aug 2018. [Online]. Available: http://dx.doi.org/10.1038/sdata.2018.161
  27. X. Wang, X. Zhang, Y. Cao, W. Wang, C. Shen, and T. Huang, “Seggpt: Segmenting everything in context.”
  28. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  29. J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou, “Transunet: Transformers make strong encoders for medical image segmentation,” arXiv preprint arXiv:2102.04306, 2021.
  30. D. Jha, P. H. Smedsrud, M. A. Riegler, D. Johansen, T. D. Lange, P. Halvorsen, and H. D. Johansen, “Resunet++: An advanced architecture for medical image segmentation,” in 2019 IEEE International Symposium on Multimedia (ISM), Dec 2019. [Online]. Available: http://dx.doi.org/10.1109/ism46123.2019.00049
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jinfeng Wang (17 papers)
  2. Sifan Song (20 papers)
  3. Xinkun Wang (2 papers)
  4. Yiyi Wang (3 papers)
  5. Yiyi Miao (2 papers)
  6. Jionglong Su (39 papers)
  7. S. Kevin Zhou (165 papers)

Summary

We haven't generated a summary for this paper yet.