Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inequalities and bounds for expected order statistics from transform-ordered families (2403.03802v2)

Published 6 Mar 2024 in stat.ME

Abstract: We introduce a comprehensive method for establishing stochastic orders among order statistics in the i.i.d. case. This approach relies on the assumption that the underlying distribution is linked to a reference distribution through a transform order. Notably, this method exhibits broad applicability, particularly since several well-known nonparametric distribution families can be defined using relevant transform orders, including the convex and the star transform orders. In the context of convex-ordered families, we demonstrate that applying Jensen's inequality enables the derivation of bounds for the probability that a random variable exceeds the expected value of its corresponding order statistic.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Some bounds for expected values of order statistics. Ann. Math. Statist. 36, 1055–1057. doi:10.1214/aoms/1177700081.
  2. Convex transform order of beta distributions with some consequences. Stat. Neerl. 75, 238–256. doi:10.1111/stan.12233.
  3. Lorenz ordering of exponential order statistics. Statist. Probab. Letters 11, 485–490. doi:10.1016/0167-7152(91)90112-5.
  4. Lorenz ordering of order statistics, in: Stochastic orders and decision under risk (Hamburg, 1989). Inst. Math. Statist., Hayward, CA. volume 19 of IMS Lecture Notes Monogr. Ser., pp. 38–47. doi:10.1214/lnms/1215459848.
  5. Nonparametric estimation under shape constraints. volume 38 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York. doi:10.1017/CBO9781139020893.
  6. Families of distributions arising from distributions of order statistics. Test 13, 1–43. doi:10.1007/BF02602999.
  7. Lorenz ordering of order statistics. Statist. Probab. Letters 76, 1855–1860. doi:10.1016/j.spl.2006.04.032.
  8. Stochastic comparisons of order statistics and spacings: a review. ISRN Probability and Statistics doi:10.5402/2012/839473.
  9. Comparisons of parallel systems according to the convex transform order. J. Appl. Probab. 46, 342–352. doi:10.1239/jap/1245676091.
  10. Ordering properties of order statistics from heterogeneous exponentiated Weibull models. Statist. Probab. Lett. 114, 119–127. doi:10.1016/j.spl.2016.03.017.
  11. Testing departures from the increasing hazard rate property. Statist. Probab. Lett. 193, 109736. doi:10.1016/j.spl.2022.109736.
  12. Second-order stochastic comparisons of order statistics. Statistics 55, 561–579. doi:10.1080/02331888.2021.1960527.
  13. Properties of increasing odds rate distributions with a statistical application. J. Statist. Plann. Inference 221, 313–325. doi:10.1016/j.jspi.2022.05.004.
  14. Nonparametric inference about increasing odds rate distributions. J. Nonparametr. Stat. 0, 1–20. doi:10.1080/10485252.2023.2220050.
  15. Transform orders and stochastic monotonicity of statistical functionals. Scand. J. Stat. 50, 1183–1200. doi:10.1111/sjos.12629.
  16. Life distributions. Springer Series in Statistics, Springer, New York.
  17. Stochastic orders generated by integrals: a unified study. Adv. in Appl. Probab. 29, 414–428. doi:10.2307/1428010.
  18. A bootstrap control chart for weibull percentiles. Quality and Reliability Engineering International 22, 141–151. doi:10.1002/qre.691.
  19. Some tests for log-concavity of life distributions. Preprint available at http://anson.ucdavis.edu/∼similar-to\sim∼debashis/techrep/logconca.pdf .
  20. Stochastic orders. Springer Series in Statistics, Springer, New York. doi:10.1007/978-0-387-34675-5.
  21. An introduction to special functions. volume 102 of Unitext. Springer, [Cham]. doi:10.1007/978-3-319-41345-7.
  22. Lorenz ordering of power-function order statistics. Statist. Probab. Lett. 30, 313–319. doi:10.1016/S0167-7152(95)00234-0.
  23. Log-odds rate and monotone log-odds rate distributions. Journal of Quality Technology 30, 376–385. doi:10.1080/00224065.1998.11979873.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com