Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximally Extendable Sheaf Codes (2403.03651v1)

Published 6 Mar 2024 in cs.IT, cs.CC, math.IT, and quant-ph

Abstract: We study sheaf codes, a type of linear codes with a fixed hierarchical collection of local codes, viewed as a sheaf of vector spaces on a finite topological space we call coded space. Many existing codes, such as tensor product codes, Sipser-Spielman codes, and their more recent high-dimensional analogs, can be naturally represented as sheaf codes on simplicial and cubical complexes, considered as coded spaces. We introduce a new property of a sheaf code, called maximal extendibility, which ensures that within a class of codes on the same coded space, we encounter as few obstructions as possible when extending local sections globally. We show that in every class of sheaf codes defined on the same space and parameterized by parity-check matrices with polynomial entries, there always exists a maximally extendable sheaf code. Such codes are very interesting since it is possible to show that maximally extendable tensor product codes are good coboundary expanders, which potentially could be used to attack the qLTC conjecture.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. I. Dinur, S. Evra, R. Livne, A. Lubotzky, and S. Mozes, “Locally testable codes with constant rate, distance, and locality,” Nov. 2021.
  2. P. Panteleev and G. Kalachev, “Asymptotically good quantum and locally testable classical ldpc codes,” Nov. 2021. [Online]. Available: http://arxiv.org/abs/2111.03654
  3. A. Leverrier and G. Zémor, “Quantum Tanner codes,” in 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS).   IEEE Computer Society, Oct. 2022, pp. 872–883.
  4. I. Dinur, M.-H. Hsieh, T.-C. Lin, and T. Vidick, “Good Quantum LDPC Codes with Linear Time Decoders,” in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, ser. STOC 2023.   New York, NY, USA: Association for Computing Machinery, Jun. 2023, pp. 905–918.
  5. G. Kalachev and P. Panteleev, “Two-sided Robustly Testable Codes,” Aug. 2023.
  6. L. Golowich and T. Kaufman, “NLTS Hamiltonians and Strongly-Explicit SoS Lower Bounds from Low-Rate Quantum LDPC Codes,” Nov. 2023.
  7. M. Hopkins and T.-C. Lin, “Explicit Lower Bounds Against ΩΩ\Omegaroman_Ω(n)-Rounds of Sum-of-Squares,” in 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), Oct. 2022, pp. 662–673.
  8. S. Gu, E. Tang, L. Caha, S. H. Choe, Z. He, and A. Kubica, “Single-shot decoding of good quantum LDPC codes,” Jun. 2023.
  9. S. Gu, C. A. Pattison, and E. Tang, “An efficient decoder for a linear distance quantum LDPC code,” in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, ser. STOC 2023.   New York, NY, USA: Association for Computing Machinery, 2023, p. 919–932. [Online]. Available: https://doi.org/10.1145/3564246.3585169
  10. A. Anshu, N. P. Breuckmann, and C. Nirkhe, “NLTS Hamiltonians from Good Quantum Codes,” in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, ser. STOC 2023.   New York, NY, USA: Association for Computing Machinery, Jun. 2023, pp. 1090–1096.
  11. D. J. Williamson and N. Baspin, “Layer Codes,” Sep. 2023.
  12. E. Portnoy, “Local Quantum Codes from Subdivided Manifolds,” Mar. 2023.
  13. T.-C. Lin, A. Wills, and M.-H. Hsieh, “Geometrically Local Quantum and Classical Codes from Subdivision,” Sep. 2023.
  14. I. Dinur and T. Kaufman, “High Dimensional Expanders Imply Agreement Expanders,” in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), Oct. 2017, pp. 974–985.
  15. R. Meshulam, “Graph codes and local systems,” Mar. 2018.
  16. N. P. Breuckmann and J. N. Eberhardt, “Balanced product quantum codes,” IEEE Transactions on Information Theory, vol. 67, no. 10, pp. 6653–6674, Oct. 2021.
  17. U. A. First and T. Kaufman, “On Good 2222-Query Locally Testable Codes from Sheaves on High Dimensional Expanders,” May 2023.
  18. I. Dinur, S. Liu, and R. Y. Zhang, “New Codes on High Dimensional Expanders,” Aug. 2023.
  19. I. Dinur, T.-C. Lin, and T. Vidick, “Expansion of higher-dimensional cubical complexes with application to quantum locally testable codes,” Feb. 2024.
  20. E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–4505, 2002.
  21. P. Panteleev and G. Kalachev, “Quantum LDPC codes with almost linear minimum distance,” IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 213–229, Jan. 2022.
  22. M. B. Hastings, J. Haah, and R. O’Donnell, “Fiber bundle codes: breaking the N1/2⁢polylog⁡(N)superscript𝑁12polylog𝑁N^{1/2}\operatorname{polylog}(N)italic_N start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT roman_polylog ( italic_N ) barrier for quantum LDPC codes,” in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.   New York, NY, USA: Association for Computing Machinery, Jun. 2021, pp. 1276–1288.
  23. G. Zémor, “On expander codes,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 835–837, 2001.
  24. I. Dinur, S. Evra, R. Livne, A. Lubotzky, and S. Mozes, “Locally testable codes with constant rate, distance, and locality,” in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, ser. STOC 2022.   New York, NY, USA: Association for Computing Machinery, Jun. 2022, pp. 357–374.
  25. M. Chen, C. Huang, and J. Li, “On the Maximally Recoverable Property for Multi-Protection Group Codes,” in 2007 IEEE International Symposium on Information Theory, Jun. 2007, pp. 486–490.
  26. P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit Maximally Recoverable Codes With Locality,” IEEE Transactions on Information Theory, vol. 60, no. 9, pp. 5245–5256, Sep. 2014.
  27. I. Tamo and A. Barg, “A Family of Optimal Locally Recoverable Codes,” IEEE Transactions on Information Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.
  28. L. Golowich and V. Guruswami, “Quantum Locally Recoverable Codes,” Nov. 2023.
  29. G. Kalachev and P. Panteleev, “Maximally extendable product codes are good coboundary expanders,” 2024, in preparation.
  30. D. Aharonov and L. Eldar, “Quantum locally testable codes,” SIAM Journal on Computing, vol. 44, no. 5, pp. 1230–1262, Jan. 2015.
  31. L. Eldar and A. W. Harrow, “Local Hamiltonians Whose Ground States Are Hard to Approximate,” in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).   Berkeley, CA, USA: IEEE, Oct. 2017, pp. 427–438.
  32. A. Cross, Z. He, A. Natarajan, M. Szegedy, and G. Zhu, “Quantum Locally Testable Code with Constant Soundness,” Jul. 2023.
  33. N. Rungtanapirom, J. Stix, and A. Vdovina, “Infinite series of quaternionic 1-vertex cube complexes, the doubling construction, and explicit cubical Ramanujan complexes,” International Journal of Algebra and Computation, vol. 29, no. 06, pp. 951–1007, Sep. 2019.
  34. A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A, vol. 54, pp. 1098–1105, Aug 1996. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.54.1098
  35. A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett., vol. 77, pp. 793–797, Jul 1996. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.77.793
  36. E. Assmus, “The category of linear codes,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 612–629, Mar. 1998.
  37. F. J. MacWilliams, “Combinatorial problems of elementary Abelian groups,” Ph.D. dissertation, Harvard University, 1962.
  38. P. Panteleev, “Sheaf codes,” Schedule and abstracts, Sep. 2022, qMATH 15.
  39. R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.
  40. M. Sipser and D. Spielman, “Expander codes,” IEEE Transactions on Information Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.
  41. P. Harsha, “Lifting small locally testable codes (LTCs) to large LTCs via HDXs, Institute for Advanced Study,” Video, Nov. 2019.
  42. A. Guo, S. Kopparty, and M. Sudan, “New affine-invariant codes from lifting,” in Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ser. ITCS ’13.   New York, NY, USA: Association for Computing Machinery, Jan. 2013, pp. 529–540.
  43. J. Lavauzelle, “Lifted projective Reed–Solomon codes,” Designs, Codes and Cryptography, vol. 87, no. 7, pp. 1541–1575, Jul. 2019.
  44. J. Brakensiek, S. Gopi, and V. Makam, “Generic Reed-Solomon Codes Achieve List-Decoding Capacity,” in Proceedings of the 55th Annual ACM Symposium on Theory of Computing, ser. STOC 2023.   New York, NY, USA: Association for Computing Machinery, Jun. 2023, pp. 1488–1501.
  45. F. Rodier, “Codes from flag varieties over a finite field,” Journal of Pure and Applied Algebra, vol. 178, no. 2, pp. 203–214, Mar. 2003.
  46. I. Dinur, S. Evra, R. Livne, A. Lubotzky, and S. Mozes, “Good Locally Testable Codes,” Jul. 2022.
  47. J. Hansen and R. Ghrist, “Toward a spectral theory of cellular sheaves,” Journal of Applied and Computational Topology, vol. 3, no. 4, pp. 315–358, Dec. 2019.
  48. J. M. Curry, “Sheaves, cosheaves and applications,” Ph.D. dissertation, University of Pennsylvania, 2014.
  49. A. Björner, “Posets, regular cw complexes and bruhat order,” European Journal of Combinatorics, vol. 5, no. 1, pp. 7–16, 1984.
  50. T. Kaufman, D. Kazhdan, and A. Lubotzky, “Ramanujan complexes and bounded degree topological expanders,” in 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.   Philadelphia, PA, USA: IEEE, Oct. 2014, pp. 484–493.
  51. A. Lubotzky, “High dimensional expanders,” in Proceedings of the International Congress of Mathematicians (ICM 2018).   Rio de Janeiro, Brazil: WORLD SCIENTIFIC, Jun. 2018, pp. 705–730. [Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/9789813272880_0027
  52. E. Ben-Sasson and M. Sudan, “Robust locally testable codes and products of codes,” Random Structures & Algorithms, vol. 28, no. 4, pp. 387–402, 2006. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20120
  53. G. Kalachev, “High-dimensional expansion of product codes is stronger than robust and agreement testability,” Aug. 2023. [Online]. Available: https://arxiv.org/abs/2308.02889
  54. R. Ghrist and Y. Hiraoka, “Network codings and sheaf cohomology,” in International Symposium on Nonlinear Theory and its Applications (NOLTA2011).   Kobe, Japan: IEICE, Sep. 2011, pp. 266–269.
  55. H. Bombin and M. A. Martin-Delgado, “Topological Quantum Distillation,” Physical Review Letters, vol. 97, no. 18, p. 180501, Oct. 2006.
  56. T. Kaufman and I. Oppenheim, “Construction of new local spectral high dimensional expanders,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, ser. STOC 2018.   New York, NY, USA: Association for Computing Machinery, Jun. 2018, pp. 773–786.
  57. J. Tillich and G. Zémor, “Quantum LDPC codes with positive rate and minimum distance proportional to n1/2,” in 2009 IEEE international symposium on information theory.   Seoul, Korea (South): IEEE, Jun. 2009, pp. 799–803.
  58. A. A. Kovalev and L. P. Pryadko, “Quantum kronecker sum-product low-density parity-check codes with finite rate,” Physical Review A, vol. 88, no. 1, p. 012311, Jul. 2013.
  59. H.-K. Lin and L. P. Pryadko, “Quantum two-block group algebra codes,” Jun. 2023.
  60. S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov, P. Rall, and T. J. Yoder, “High-threshold and low-overhead fault-tolerant quantum memory,” Aug. 2023.
  61. Q. Xu, J. P. B. Ataides, C. A. Pattison, N. Raveendran, D. Bluvstein, J. Wurtz, B. Vasic, M. D. Lukin, L. Jiang, and H. Zhou, “Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable Atom Arrays,” Aug. 2023.
  62. P. Panteleev and G. Kalachev, “Degenerate quantum LDPC codes with good finite length performance,” Quantum, vol. 5, p. 585, Nov. 2021. [Online]. Available: https://quantum-journal.org/papers/q-2021-11-22-585/
  63. S. Yang and R. Calderbank, “Spatially-Coupled QDLPC Codes,” Sep. 2023.
  64. M. Borello, A.-L. Horlemann, H. Islam, and N. Willenborg, “Dihedral Quantum Codes,” Oct. 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.