Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-dimensional Kagome-in-Honeycomb materials (MN$_4$)$_3$C$_{32}$ (M=Pt or Mn) (2403.03402v1)

Published 6 Mar 2024 in cond-mat.mtrl-sci and cond-mat.mes-hall

Abstract: We propose two novel two-dimensional (2D) topological materials, (PtN$4$)$_3$C${32}$ and (MnN$4$)$_3$C${32}$, with a special geometry that we named as kagome-in-honeycomb (KIH) lattice structure, to illustrate the coexistence of the paradigmatic states of kagome physics, Dirac fermions and flat bands, that are difficult to be simultaneously observed in three-dimensional realistic systems. In such system, MN$4$(M=Pt or Mn) moieties are embedded in honeycomb graphene sheet according to kagome lattice structure, thereby resulting in a KIH lattice. Using the first-principles calculations, we have systemically studied the structural, electronic, and topological properties of these two materials. In the absence of spin-orbit coupling (SOC), they both exhibit the coexistence of Dirac/quadratic-crossing cone and flat band near the Fermi level. When SOC is included, a sizable topological gap is opened at the Dirac/quadratic-crossing nodal point. For nonmagnetic (PtN$_4$)$_3$C${32}$, the system is converted into a $\mathbb{Z}2$ topological quantum spin Hall insulator defined on a curved Fermi level, while for ferromagnetic (MnN$_4$)$_3$C${32}$, the material is changed from a half-semi-metal to a quantum anomalous Hall insulator with nonzero Chern number and nontrivial chiral edge states. Our findings not only predict a new family of 2D quantum materials, but also provide an experimentally feasible platform to explore the emergent kagome physics, topological quantum Hall physics, strongly correlated phenomena, and theirs fascinating applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. D. F. Perepichka and F. Rosei, Science 323, 216 (2009).
  2. Y. Jing and T. Heine, Nature Materials 19, 823 (2020).
  3. S. L. James, Chem. Soc. Rev. 32, 276 (2003).
  4. T. Mueller and E. Malic, npj 2D Materials and Applications 2, 29 (2018).
  5. M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).
  6. N. J. Ghimire and I. I. Mazin, Nature Materials 19, 137 (2020).
  7. X. Yang and G. Wu, ACS Nano 3, 1646 (2009).
  8. X.-L. Qi, Phys. Rev. Lett. 107, 126803 (2011).
  9. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
  10. C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).
  11. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
  12. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
  13. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
  14. M. Cococcioni and S. de Gironcoli, Phys. Rev. B 71, 035105 (2005).
  15. A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 035108 (2011).
  16. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  17. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com