Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correlated decoding of logical algorithms with transversal gates (2403.03272v2)

Published 5 Mar 2024 in quant-ph, cond-mat.dis-nn, and cond-mat.stat-mech

Abstract: Quantum error correction is believed to be essential for scalable quantum computation, but its implementation is challenging due to its considerable space-time overhead. Motivated by recent experiments demonstrating efficient manipulation of logical qubits using transversal gates (Bluvstein et al., Nature 626, 58-65 (2024)), we show that the performance of logical algorithms can be substantially improved by decoding the qubits jointly to account for error propagation during transversal entangling gates. We find that such correlated decoding improves the performance of both Clifford and non-Clifford transversal entangling gates, and explore two decoders offering different computational runtimes and accuracies. In particular, by leveraging the deterministic propagation of stabilizer measurement errors through transversal Clifford gates, we find that correlated decoding enables the number of noisy syndrome extraction rounds between these gates to be reduced from $O(d)$ to $O(1)$ in Clifford circuits, where $d$ is the code distance. We verify numerically that this approach substantially reduces the space-time cost of deep logical Clifford circuits. These results demonstrate that correlated decoding provides a major advantage in early fault-tolerant computation, as realized in recent experiments, and further indicate it has considerable potential to reduce the space-time cost in large-scale logical algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. P. W. Shor, Physical Review A 52, R2493 (1995).
  2. J. Preskill, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 385 (1998).
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  4. A. Y. Kitaev, Annals of Physics 303, 2 (2003).
  5. G. Q. AI and Collaborators, Nature 618, 264 (2023a).
  6. G. Q. AI and Collaborators, Nature 614, 676 (2023b).
  7. D. H. Menendez, A. Ray, and M. Vasmer, Implementing fault-tolerant non-clifford gates using the [[8,3,2]] color code (2023), arXiv:2309.08663 [quant-ph] .
  8. C. N. Self, M. Benedetti, and D. Amaro, Nature Physics 10.1038/s41567-023-02282-2 (2024).
  9. B. M. Terhal, Rev. Mod. Phys. 87, 307 (2015).
  10. D. Litinski, Quantum 3, 128 (2019).
  11. C. Gidney and M. Ekerå, Quantum 5, 433 (2021).
  12. D. Litinski and N. Nickerson, Active volume: An architecture for efficient fault-tolerant quantum computers with limited non-local connections (2022), arXiv:2211.15465 [quant-ph] .
  13. S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
  14. C. Gidney, Quantum 5, 497 (2021).
  15. D. Gottesman, Opportunities and challenges in fault-tolerant quantum computation (2022), arXiv:2210.15844 [quant-ph] .
  16. M. McEwen, D. Bacon, and C. Gidney, Quantum 7, 1172 (2023).
  17. N. Delfosse and A. Paetznick, Spacetime codes of Clifford circuits (2023), arXiv:2304.05943 [quant-ph] .
  18. D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation (2009), arXiv:0904.2557 [quant-ph] .
  19. O. Higgott, PyMatching: A Python package for decoding quantum codes with minimum-weight perfect matching (2021), arXiv:2105.13082 [quant-ph].
  20. O. Higgott and C. Gidney, Sparse blossom: correcting a million errors per core second with minimum-weight matching (2023), arXiv:2303.15933 [quant-ph] .
  21. A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant quantum computing with color codes (2011), arXiv:1108.5738 [quant-ph] .
  22. Y. Takada, Y. Takeuchi, and K. Fujii, Highly accurate decoder for topological color codes with simulated annealing (2023), arXiv:2303.01348 [quant-ph] .
  23. Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2023).
  24. E. Berlekamp, R. McEliece, and H. van Tilborg, IEEE Transactions on Information Theory 24, 384 (1978).
  25. A. Vardy, IEEE Transactions on Information Theory 43, 1757 (1997).
  26. N. Delfosse and N. H. Nickerson, Quantum 5, 595 (2021).
  27. N. Delfosse, V. Londe, and M. E. Beverland, IEEE Transactions on Information Theory 68, 3187 (2022).
  28. P. W. Shor, Fault-tolerant quantum computation (1997a), arXiv:quant-ph/9605011 [quant-ph] .
  29. G. Tóth and O. Gühne, Phys. Rev. A 72, 022340 (2005).
  30. D. Gottesman, The Heisenberg representation of quantum computers (1998), arXiv:quant-ph/9807006 [quant-ph] .
  31. A. Paetznick and B. W. Reichardt, Phys. Rev. Lett. 111, 090505 (2013).
  32. T. R. Scruby, M. Vasmer, and D. E. Browne, Phys. Rev. Res. 4, 043052 (2022).
  33. P. W. Shor, SIAM Journal on Computing 26, 1484 (1997b).
  34. S. Lloyd, Science 273, 1073 (1996).
  35. N. P. Breuckmann and J. N. Eberhardt, PRX Quantum 2, 040101 (2021).
  36. P. Sarvepalli and R. Raussendorf, Phys. Rev. A 85, 022317 (2012).
  37. N. Delfosse, Phys. Rev. A 89, 012317 (2014).
  38. C. Gidney and C. Jones, New circuits and an open source decoder for the color code (2023).
  39. S. Bravyi, M. Suchara, and A. Vargo, Phys. Rev. A 90, 032326 (2014).
  40. A. J. Ferris and D. Poulin, Physical Review Letters 113, 030501 (2014).
  41. C. T. Chubb, General tensor network decoding of 2D Pauli codes (2021), arXiv:2101.04125 [quant-ph].
  42. P. Panteleev and G. Kalachev, Quantum 5, 585 (2021).
  43. N. Delfosse and G. Zémor, Phys. Rev. Res. 2, 033042 (2020).
  44. D. Wiedemann, IEEE Transactions on Information Theory 32, 54 (1986).
  45. D. Gottesman, Stabilizer codes and quantum error correction (1997), arXiv:quant-ph/9705052 [quant-ph] .
  46. F. H. E. Watson and S. D. Barrett, New Journal of Physics 16, 093045 (2014).
  47. M. E. Beverland, A. Kubica, and K. M. Svore, PRX Quantum 2, 020341 (2021).
  48. S. Aaronson and D. Gottesman, Physical Review A 70 (2004).
  49. N. Delfosse and J.-P. Tillich, in 2014 IEEE International Symposium on Information Theory (IEEE, 2014).
Citations (15)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com