Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Information Gathering for Long-Horizon Navigation Under Uncertainty by Learning the Value of Information (2403.03269v1)

Published 5 Mar 2024 in cs.RO

Abstract: We address the task of long-horizon navigation in partially mapped environments for which active gathering of information about faraway unseen space is essential for good behavior. We present a novel planning strategy that, at training time, affords tractable computation of the value of information associated with revealing potentially informative regions of unseen space, data used to train a graph neural network to predict the goodness of temporally-extended exploratory actions. Our learning-augmented model-based planning approach predicts the expected value of information of revealing unseen space and is capable of using these predictions to actively seek information and so improve long-horizon navigation. Across two simulated office-like environments, our planner outperforms competitive learned and non-learned baseline navigation strategies, achieving improvements of up to 63.76% and 36.68%, demonstrating its capacity to actively seek performance-critical information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. Pineau and S. Thrun, “An integrated approach to hierarchy and abstraction for POMDPs,” Carnegie Mellon University, Tech. Rep. CMU-RI-TR-02-21, 2002.
  2. G. Wayne, C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-Barwinska, J. W. Rae, P. Mirowski, J. Z. Leibo, A. Santoro, M. Gemici, M. Reynolds, T. Harley, J. Abramson, S. Mohamed, D. J. Rezende, D. Saxton, A. Cain, C. Hillier, D. Silver, K. Kavukcuoglu, M. M. Botvinick, D. Hassabis, and T. P. Lillicrap, “Unsupervised predictive memory in a goal-directed agent,” CoRR, vol. abs/1803.10760, 2018.
  3. P. Mirowski, M. K. Grimes, M. Malinowski, K. M. Hermann, K. Anderson, D. Teplyashin, K. Simonyan, K. Kavukcuoglu, A. Zisserman, and R. Hadsell, “Learning to navigate in cities without a map,” CoRR, vol. abs/1804.00168, 2018.
  4. E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra, “Decentralized distributed PPO: Learning near-perfect pointgoal navigators from 2.5 billion frames,” in ICLR, 2020.
  5. M. Pfeiffer, M. Schaeuble, J. I. Nieto, R. Siegwart, and C. Cadena, “From perception to decision: A data-driven approach to end-to-end motion planning for autonomous ground robots,” CoRR, vol. abs/1609.07910, 2016.
  6. G. J. Stein, C. Bradley, and N. Roy, “Learning over subgoals for efficient navigation of structured, unknown environments,” in Proceedings of The 2nd Conference on Robot Learning, ser. Proceedings of Machine Learning Research, A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., vol. 87.   PMLR, 29–31 Oct 2018, pp. 213–222.
  7. R. I. Arnob and G. J. Stein, “Improving reliable navigation under uncertainty via predictions informed by non-local information,” in International Conference on Intelligent Robots and Systems (IROS), 2023, in press.
  8. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observable stochastic domains,” Artif. Intell., vol. 101, no. 1–2, p. 99–134, 1998.
  9. G. Parascandolo, L. Buesing, J. Merel, L. Hasenclever, J. Aslanides, J. B. Hamrick, N. Heess, A. Neitz, and T. Weber, “Divide-and-conquer monte carlo tree search for goal-directed planning,” 2020.
  10. C. Richter, J. Ware, and N. Roy, “High-speed autonomous navigation of unknown environments using learned probabilities of collision,” in ICRA, 2014, pp. 6114–6121.
  11. S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and M. Hebert, “Learning monocular reactive uav control in cluttered natural environments,” in 2013 IEEE international conference on robotics and automation.   IEEE, 2013, pp. 1765–1772.
  12. C. A. Richter, “Autonomous navigation in unknown environments using machine learning,” PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2017.
  13. Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “RL22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT: Fast reinforcement learning via slow reinforcement learning,” in International Conference on Learning Representations, 2017.
  14. Y. Yang, J. P. Inala, O. Bastani, Y. Pu, A. Solar-Lezama, and M. Rinard, “Program synthesis guided reinforcement learning for partially observed environments,” Advances in neural information processing systems, vol. 34, pp. 29 669–29 683, 2021.
  15. S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping and planning for visual navigation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2616–2625.
  16. J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep reinforcement learning with successor features for navigation across similar environments,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 2371–2378.
  17. L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 31–36.
  18. P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell, “Learning to navigate in complex environments,” CoRR, vol. abs/1611.03673, 2016.
  19. P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep reinforcement learning that matters,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
  20. M. Lodel, B. Brito, Álvaro Serra-Gómez, L. Ferranti, R. Babuška, and J. Alonso-Mora, “Where to look next: Learning viewpoint recommendations for informative trajectory planning,” 2022.
  21. J. Velez, G. Hemann, A. Huang, I. Posner, and N. Roy, “Planning to perceive: Exploiting mobility for robust object detection,” Proceedings of the International Conference on Automated Planning and Scheduling, vol. 21, no. 1, pp. 266–273, Mar. 2011.
  22. H. Wang, W. Wang, T. Shu, W. Liang, and J. Shen, “Active visual information gathering for vision-language navigation,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16.   Springer, 2020, pp. 307–322.
  23. S. Choudhury, A. Kapoor, G. Ranade, and D. Dey, “Learning to gather information via imitation,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 908–915.
  24. B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas, “Anytime planning for decentralized multirobot active information gathering,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1025–1032, 2018.
  25. Y. Li, A. Debnath, G. J. Stein, and J. Kosecka, “Learning-augmented model-based planning for visual exploration,” in International Conference on Intelligent Robots and Systems (IROS), 2023, in press.
  26. S. K. Ramakrishnan, D. Jayaraman, and K. Grauman, “An exploration of embodied visual exploration,” International Journal of Computer Vision, vol. 129, pp. 1616–1649, 2021.
  27. X. Zhang, S. Amiri, J. Sinapov, J. Thomason, P. Stone, and S. Zhang, “Multimodal embodied attribute learning by robots for object-centric action policies,” Auton. Robots, vol. 47, no. 5, p. 505–528, mar 2023.
  28. P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç. Gülçehre, H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational inductive biases, deep learning, and graph networks,” CoRR, vol. abs/1806.01261, 2018.
  29. S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?” in International Conference on Learning Representations, 2021.

Summary

We haven't generated a summary for this paper yet.