Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Four-band effective square lattice model for Bernal-stacked bilayer graphene (2403.03155v1)

Published 5 Mar 2024 in cond-mat.mes-hall

Abstract: Bernal-stacked bilayer graphene (BLG) provides an ideal basis for gate-controlled, and free of etching, electronic devices. Theoretical modeling of realistic devices is an essential part of research, however, simulations of large-scale BLG devices continue to be extremely challenging. Micrometer-sized systems are predominantly beyond the reach of the commonly used atomistic tight-binding method, while other numerical approaches based on the two dimensional Dirac equation are not straightforward to conduct due to the fermion doubling problem. Here we present an approach based on the continuum model, unharmed by the fermion doubling. The discretization of the BLG continuum Hamiltonian leads to an effective four-band model, with both valleys built-in. We demonstrate its performance with realistic, large-scale systems, and obtain results consistent with experiments and with the tight-binding model, over a broad range of magnetic field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. D. B. Kaplan, Phys. Lett. B 288, 342 (1992).
  2. K. G. Wilson, in 13th International School of Subnuclear Physics: New Phenomena in Subnuclear Physics (1975).
  3. L. Susskind, Phys. Rev. D 16, 3031 (1977).
  4. R. Stacey, Phys. Rev. D 26, 468 (1982).
  5. J. B. Kogut, Rev. Mod. Phys. 55, 775 (1983).
  6. A. R. Hernández and C. H. Lewenkopf, Phys. Rev. B 86, 155439 (2012).
  7. E. McCann and M. Koshino, Rep. Progr. Phys. 76, 056503 (2013).
  8. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
  9. A. Mreńca-Kolasińska and B. Szafran, Phys. Rev. B 94, 195315 (2016).
  10. S. Iwakiri, A. Mestre-Torá, E. Portolés, M. Visscher, M. Perego, G. Zheng, T. Taniguchi, K. Watanabe, M. Sigrist, T. Ihn,  and K. Ensslin, “Tunable quantum interferometer for correlated moiré electrons,”  (2023), arXiv:2308.07400 [cond-mat.mes-hall] .
  11. M. Wimmer, Quantum transport in nanostructures: From computational concepts to spintronics in graphene and magnetictunnel junctions, Ph.D. thesis, Universitat Regensburg (2008).
  12. M.-H. Liu and K. Richter, Phys. Rev. B 86, 115455 (2012).
  13. J. Sun, S. A. A. Ghorashi, K. Watanabe, T. Taniguchi, F. Camino, J. Cano,  and X. Du, “Signature of Correlated Insulator in Electric Field Controlled Superlattice,”  (2023), arXiv:2306.06848 [cond-mat.str-el] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com