Transition from topological to chaos in the nonlinear Su-Schrieffer-Heeger model (2403.03038v3)
Abstract: Recent studies on topological materials are expanding into the nonlinear regime, while the central principle, namely the bulk-edge correspondence, is yet to be elucidated in the strongly nonlinear regime. Here, we reveal that nonlinear topological edge modes can exhibit the transition to spatial chaos by increasing nonlinearity, which can be a universal mechanism of the breakdown of the bulk-edge correspondence. Specifically, we unveil the underlying dynamical system describing the spatial distribution of zero modes and show the emergence of chaos. We also propose the correspondence between the absolute value of the topological invariant and the dimension of the stable manifold under sufficiently weak nonlinearity. Our results provide a general guiding principle to investigate the nonlinear bulk-edge correspondence that can potentially be extended to arbitrary dimensions.
- M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
- X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
- F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
- C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
- F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008).
- E. P. Gross, Il Nuovo Cimento 20, 454 (1961).
- L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).
- H. Chaté, Annual Review of Condensed Matter Physics 11, 189 (2020).
- J. Buck, Quart. Rev. Biol. 63, 265 (1988).
- C. H. Luo and Y. Rudy, Circ. Res. 68, 1501 (1991).
- R. Boyd, Nonlinear Optics, Electronics & Electrical (Academic Press, 2003).
- D. Leykam and Y. D. Chong, Phys. Rev. Lett. 117, 143901 (2016).
- F. Zangeneh-Nejad and R. Fleury, Phys. Rev. Lett. 123, 053902 (2019).
- A. Darabi and M. J. Leamy, Phys. Rev. Appl. 12, 044030 (2019).
- S. Mukherjee and M. C. Rechtsman, Phys. Rev. X 11, 041057 (2021).
- M. Ezawa, Phys. Rev. B 104, 235420 (2021).
- C. W. Wächtler and G. Platero, Phys. Rev. Res. 5, 023021 (2023).
- K. Sone, M. Ezawa, Y. Ashida, N. Yoshioka, and T. Sagawa, “Nonlinearity-induced topological phase transition characterized by the nonlinear chern number,” (2023), arXiv:2307.16827 [cond-mat.mes-hall] .
- A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
- A. Kitaev, AIP Conference Proceedings 1134, 22 (2009).
- See Supplemental Material that will be attached to the published version.
- T. D. Rogers and D. C. Whitley, Mathematical Modelling 4, 9 (1983).
- C. L. Kane and T. C. Lubensky, Nat. Phys. 10, 39 (2014).
- H.-C. Hsu and T.-W. Chen, Phys. Rev. B 102, 205425 (2020).
- M. Hénon, “A two-dimensional mapping with a strange attractor,” in The Theory of Chaotic Attractors, edited by B. R. Hunt, T.-Y. Li, J. A. Kennedy, and H. E. Nusse (Springer New York, New York, NY, 2004) pp. 94–102.
- S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
- H. Zhou and J. Y. Lee, Phys. Rev. B 99, 235112 (2019).
- C. Yuce, Physics Letters A 408, 127484 (2021).
- M. Ezawa, Phys. Rev. B 105, 125421 (2022).