Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single-level Robust Bidding of Renewable-only Virtual Power Plant in Energy and Ancillary Service Markets for Worst-case Profit (2403.02953v1)

Published 5 Mar 2024 in eess.SY and cs.SY

Abstract: This paper proposes a novel single-level robust mathematical approach to model the RES-only Virtual Power Plant (RVPP) bidding problem in the simultaneous Day Ahead Market (DAM) and Secondary Reserve Market (SRM). The worst-case profit of RVPP due to uncertainties related to electricity prices, Non-dispatchable Renewable Energy Sources (ND-RES) production, and flexible demand is captured. In order to find the worst-case profit in a single-level model, the relationship between price and energy uncertainties leads to some non-linear constraints, which are appropriately linearized. The simulation results show the superiority of the proposed robust model compared to those in the literature, as well as its computational efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. F. Gulotta, P. C. del Granado, P. Pisciella, D. Siface, and D. Falabretti, “Short-term uncertainty in the dispatch of energy resources for VPP: A novel rolling horizon model based on stochastic programming,” International Journal of Electrical Power & Energy Systems, vol. 153, p. 109355, 2023.
  2. C. Yang, X. Du, D. Xu, J. Tang, X. Lin, K. Xie, and W. Li, “Optimal bidding strategy of renewable-based virtual power plant in the day-ahead market,” International Journal of Electrical Power & Energy Systems, vol. 144, p. 108557, 2023.
  3. Á. Ortega, O. Oladimeji, H. Nemati, L. Sigrist, P. Sánchez-Martín, L. Rouco, E. Lobato, M. Biencinto, and I. López, “Modeling of VPPs for their optimal operation and configuration,” POSYTYF Consortium, deliverable 5.1., Tech. Rep., 2021.
  4. Y. Zhang, F. Liu, Z. Wang, Y. Su, W. Wang, and S. Feng, “Robust scheduling of virtual power plant under exogenous and endogenous uncertainties,” IEEE Transactions on Power Systems, vol. 37, no. 2, pp. 1311–1325, 2021.
  5. J. F. Venegas-Zarama, J. I. Muñoz-Hernandez, L. Baringo, P. Diaz-Cachinero, and I. De Domingo-Mondejar, “A review of the evolution and main roles of virtual power plants as key stakeholders in power systems,” IEEE Access, vol. 10, pp. 47 937–47 964, 2022.
  6. H. Gao, T. Jin, C. Feng, C. Li, Q. Chen, and C. Kang, “Review of virtual power plant operations: Resource coordination and multidimensional interaction,” Applied Energy, vol. 357, p. 122284, 2024.
  7. N. Naval and J. M. Yusta, “Virtual power plant models and electricity markets-A review,” Renewable and Sustainable Energy Reviews, vol. 149, p. 111393, 2021.
  8. L. Zhang, D. Liu, G. Cai, L. Lyu, L. H. Koh, and T. Wang, “An optimal dispatch model for virtual power plant that incorporates carbon trading and green certificate trading,” International Journal of Electrical Power & Energy Systems, vol. 144, p. 108558, 2023.
  9. A. A. Bafrani, A. Rezazade, and M. Sedighizadeh, “Robust electrical reserve and energy scheduling of power system considering hydro pumped storage units and renewable energy resources,” Journal of Energy Storage, vol. 54, p. 105310, 2022.
  10. L. Ju, Q. Tan, Y. Lu, Z. Tan, Y. Zhang, and Q. Tan, “A CVaR-robust-based multi-objective optimization model and three-stage solution algorithm for a virtual power plant considering uncertainties and carbon emission allowances,” International Journal of Electrical Power & Energy Systems, vol. 107, pp. 628–643, 2019.
  11. M. Rahimiyan and L. Baringo, “Strategic bidding for a virtual power plant in the day-ahead and real-time markets: A price-taker robust optimization approach,” IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 2676–2687, 2015.
  12. J. Wang, V. Ilea, C. Bovo, N. Xie, and Y. Wang, “Optimal self-scheduling for a multi-energy virtual power plant providing energy and reserve services under a holistic market framework,” Energy, vol. 278, p. 127903, 2023.
  13. M. Z. Oskouei, B. Mohammadi-Ivatloo, M. Abapour, M. Shafiee, and A. Anvari-Moghaddam, “Strategic operation of a virtual energy hub with the provision of advanced ancillary services in industrial parks,” IEEE Transactions on Sustainable Energy, vol. 12, no. 4, pp. 2062–2073, 2021.
  14. L. Silva-Rodriguez, A. Sanjab, E. Fumagalli, and M. Gibescu, “Light robust co-optimization of energy and reserves in the day-ahead electricity market,” Applied Energy, vol. 353, p. 121982, 2024.
  15. H. Nemati, P. Sánchez-Martín, Á. Ortega, L. Sigrist, E. Lobato, and L. Rouco, “Flexible robust optimal bidding of renewable virtual power plants in sequential markets,” Applied Energy, [submitted in August 2023, and currently under review]. [Online]. Available: https://arxiv.org/abs/2402.12032
  16. M. Khojasteh, P. Faria, F. Lezama, and Z. Vale, “A novel adaptive robust model for scheduling distributed energy resources in local electricity and flexibility markets,” Applied Energy, vol. 342, p. 121144, 2023.
  17. Z. Li, M. Liu, M. Xie, and J. Zhu, “Robust optimization approach with acceleration strategies to aggregate an active distribution system as a virtual power plant,” International Journal of Electrical Power & Energy Systems, vol. 142, p. 108316, 2022.
  18. A. Baringo, L. Baringo, and J. M. Arroyo, “Day-ahead self-scheduling of a virtual power plant in energy and reserve electricity markets under uncertainty,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 1881–1894, 2018.
  19. X. Kong, J. Xiao, D. Liu, J. Wu, C. Wang, and Y. Shen, “Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties,” Applied Energy, vol. 279, p. 115707, 2020.
  20. D. Bertsimas and M. Sim, “The price of robustness,” Operations research, vol. 52, no. 1, pp. 35–53, 2004.
  21. O. Oladimeji, Á. Ortega, L. Sigrist, L. Rouco, P. Sánchez-Martín, and E. Lobato, “Optimal participation of heterogeneous, RES-based virtual power plants in energy markets,” Energies, vol. 15, no. 9, p. 3207, 2022.
  22. O. Oladimeji, Á. Ortega, L. Sigrist, P. Sánchez-Martín, E. Lobato, and L. Rouco, “Modeling demand flexibility of RES-based virtual power plants,” in 2022 IEEE Power & Energy Society General Meeting (PESGM).   IEEE, 2022, pp. 1–5.
  23. Iberdrola, “Wind production forecast.” [Online]. Available: {https://www.iberdrola.es/.}
  24. M. Biencinto, L. González, and L. Valenzuela, “Using time-windowed solar radiation profiles to assess the daily uncertainty of solar thermal electricity production forecasts,” Journal of Cleaner Production, vol. 379, p. 134821, 2022.
  25. Red Eléctrica de España, “Electricity price forecast.” [Online]. Available: {https://www.esios.ree.es/en/analysis/634}

Summary

We haven't generated a summary for this paper yet.