Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase Behavior and Dynamics of Active Brownian Particles in an Alignment Field (2403.02947v1)

Published 5 Mar 2024 in cond-mat.stat-mech and cond-mat.soft

Abstract: Self-propelled particles that are subject to noise are a well-established generic model system for active matter. A homogeneous alignment field can be used to orient the direction of the self-propulsion velocity and to model systems like phoretic Janus particles with a magnetic dipole moment or magnetotactic bacteria in an external magnetic field. Computer simulations are used to predict the phase behavior and dynamics of self-propelled Brownian particles in a homogeneous alignment field in two dimensions. Phase boundaries of the gas-liquid coexistence region are calculated for various P\'eclet numbers, particle densities, and alignment field strengths. Critical points and exponents are calculated and, in agreement with previous simulations, do not seem to belong to the universality class of the 2D Ising model. Finally, the dynamics of spinodal decomposition for quenching the system from the one-phase to the two-phase coexistence region by increasing P\'eclet number is characterized. Our results may help to identify parameters for optimal transport of active matter in complex environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. J. K. Parrish, S. V. Viscido, and D. Grünbaum, Biol. Bull. 202, 296 (2002).
  2. M. Chraibi, A. Seyfried, and A. Schadschneider, Phys. Rev. E 82, 046111 (2010).
  3. S. Roca-Bonet and M. Ripoll, Eur. Phys. J. E 45, 25 (2022).
  4. L. Giomi, N. Hawley-Weld, and L. Mahadevan, Proc. R. Soc. A. 469, 20120637 (2013).
  5. J. Deseigne, O. Dauchot, and H. Chaté, Phys. Rev. Lett. 105, 098001 (2010).
  6. J. Elgeti, R. G. Winkler, and G. Gompper, Rep. Prog. Phys. 78, 056601 (2015).
  7. A. Baskaran and M. C. Marchetti, Phys. Rev. E 77, 011920 (2008).
  8. A. Wysocki, R. G. Winkler, and G. Gompper, EPL (Europhys. Lett.) 105, 48004 (2014).
  9. F. Dittrich, T. Speck, and P. Virnau, Eur. Phys. J. E 44, 53 (2021).
  10. T. Zinn, L. Sharpnack, and T. Narayanan, Soft Matter 19, 2311 (2023).
  11. F. Peruani, A. Deutsch, and M. Bär, Phys. Rev. E 74, 10.1103/PhysRevE.74.030904 (2006).
  12. R. S. Negi, R. G. Winkler, and G. Gompper, Phys. Rev. Research 6, 013118 (2024).
  13. L. Barberis and F. Peruani, Phys. Rev. Lett. 117, 248001 (2016).
  14. A. J. Bray, Adv. Phys. 51, 481 (2002).
  15. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).
  16. J. Midya, S. Majumder, and S. K. Das, J. Phys.: Condens. Matter 26, 452202 (2014).
  17. J. Midya, S. Majumder, and S. K. Das, Phys. Rev. E 92, 022124 (2015).
  18. C. Yeung, M. Rao, and R. C. Desai, Phys. Rev. E 53, 3073 (1996), publisher: American Physical Society.
  19. A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2009).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com