Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Hyperbolicity, Stability and Expansivity for Operators on Locally Convex Spaces (2403.02843v2)

Published 5 Mar 2024 in math.DS and math.FA

Abstract: We introduce and study the notions of (generalized) hyperbolicity, topological stability and (uniform) topological expansivity for operators on locally convex spaces. We prove that every generalized hyperbolic operator on a locally convex space has the finite shadowing property. Contrary to what happens in the Banach space setting, hyperbolic operators on Fr\'echet spaces may fail to have the shadowing property, but we find additional conditions that ensure the validity of the shadowing property. Assuming that the space is sequentially complete, we prove that generalized hyperbolicity implies the strict periodic shadowing property, but we also show that the hypothesis of sequential completeness is essential. We show that operators with the periodic shadowing property on topological vector spaces have other interesting dynamical behaviors, including the fact that the restriction of such an operator to its chain recurrent set is topologically mixing and Devaney chaotic. We prove that topologically stable operators on locally convex spaces have the finite shadowing property and the strict periodic shadowing property. As a consequence, topologically stable operators on Banach spaces have the shadowing property. Moreover, we prove that generalized hyperbolicity implies topological stability for operators on Banach spaces. We prove that uniformly topologically expansive operators on locally convex spaces are neither Li-Yorke chaotic nor topologically transitive. Finally, we characterize the notion of topological expansivity for weighted shifts on Fr\'echet sequence spaces. Several examples are provided.

Citations (1)

Summary

We haven't generated a summary for this paper yet.