Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Absence of antisymmetric tensor fields : Clue from Starobinsky model of f(R) gravity (2403.02771v4)

Published 5 Mar 2024 in astro-ph.CO and gr-qc

Abstract: One of the surprising aspects of the present Universe, is the absence of any noticeable observable effects of higher-rank antisymmetric tensor fields in any natural phenomena. Here, we address the possible explanation of the absence of the higher rank antisymmetric tensor fields within the framework of $f(R)$ gravity. We explore the cosmological evolution of the scalar degrees of freedom associated with higher curvature term in a general $f(R)$ gravity model $f (R) = R +\alpha_n Rn$. We show that while different cosmological parameters mimic standard behaviour at different epochs for different forms of higher curvature gravity (i.e. different values of n ), only Starobinsky model (n = 2) gives a natural justification for the invisibility of the signatures of the massless modes of higher rank antisymmetric fields. In contrast, for other models ($n\neq2$), despite their agreement with standard cosmology, the scalar degree of freedom induces an enhancement in the coupling of the antisymmetric fields and thereby contradicts the observation. The result does not change even with the inclusion of the Cosmological Constant. Thus, our result reveals that among different $f(R)$ models, Starobinsky model successfully explains the suppression of the massless modes of higher rank antisymmetric tensor fields leading to their invisibility in the present universe.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D 9, 2273 (1974).
  2. J. Polchinski, Contents, in String Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1998) p. ix–xii.
  3. M. B. Green, J. H. Schwarz, and E. Witten, Frontmatter, in Superstring Theory: 25th Anniversary Edition, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2012) p. i–iv.
  4. V. de Sabbata and C. Sivaram, Spin and Torsion in Gravitation (WORLD SCIENTIFIC, 1994) https://www.worldscientific.com/doi/pdf/10.1142/2358 .
  5. P. Majumdar and S. S. Gupta, LETTER TO THE EDITOR: Parity-violating gravitational coupling of electromagnetic fields, Classical and Quantum Gravity 16, L89 (1999), arXiv:gr-qc/9906027 [gr-qc] .
  6. B. Mukhopadhyaya, S. Sen, and S. SenGupta, Does a randall-sundrum scenario create the illusion of a torsion-free universe?, Phys. Rev. Lett. 89, 121101 (2002).
  7. B. Mukhopadhyaya, S. Sen, and S. SenGupta, Bulk antisymmetric tensor fields in a randall-sundrum model, Phys. Rev. D 76, 121501 (2007).
  8. A. Das, B. Mukhopadhyaya, and S. SenGupta, Why has spacetime torsion such negligible effect on the universe?, Phys. Rev. D 90, 107901 (2014).
  9. A. Das and S. SenGupta, Antisymmetric tensor fields in a generalized Randall-Sundrum scenario, Physics Letters B 698, 311 (2011), arXiv:1010.2076 [hep-th] .
  10. O. Lebedev, Torsion constraints in the randall-sundrum scenario, Phys. Rev. D 65, 124008 (2002).
  11. T. P. Sotiriou and V. Faraoni, f⁢(r)𝑓𝑟f(r)italic_f ( italic_r ) theories of gravity, Rev. Mod. Phys. 82, 451 (2010).
  12. A. De Felice and S. Tsujikawa, f( R) Theories, Living Reviews in Relativity 13, 3 (2010), arXiv:1002.4928 [gr-qc] .
  13. S. Nojiri and S. D. Odintsov, Introduction to Modified Gravity and Gravitational Alternative for Dark Energy, International Journal of Geometric Methods in Modern Physics 04, 115 (2007), arXiv:hep-th/0601213 [hep-th] .
  14. S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models, Physics Reports 505, 59 (2011), arXiv:1011.0544 [gr-qc] .
  15. A. Paliathanasis, f(R)-gravity from Killing tensors, Classical and Quantum Gravity 33, 075012 (2016), arXiv:1512.03239 [gr-qc] .
  16. N. Banerjee and T. Paul, Inflationary scenario from higher curvature warped spacetime, arXiv e-prints , arXiv:1706.05964 (2017), arXiv:1706.05964 [hep-th] .
  17. S. Chakraborty and S. SenGupta, Solving higher curvature gravity theories, European Physical Journal C 76, 552 (2016), arXiv:1604.05301 [gr-qc] .
  18. S. D. Odintsov, D. Sáez-Chillón Gómez, and G. S. Sharov, Is exponential gravity a viable description for the whole cosmological history?, European Physical Journal C 77, 862 (2017), arXiv:1709.06800 [gr-qc] .
  19. E. V. Linder, Exponential gravity, Phys. Rev. D 80, 123528 (2009), arXiv:0905.2962 [astro-ph.CO] .
  20. K. Bamba, C.-Q. Geng, and C.-C. Lee, Cosmological evolution in exponential gravity, JCAP 2010 (8), 021, arXiv:1005.4574 [astro-ph.CO] .
  21. S. Capozziello, S. Nojiri, and S. D. Odintsov, Dark energy: the equation of state description versus scalar-tensor or modified gravity, Physics Letters B 634, 93 (2006), arXiv:hep-th/0512118 [hep-th] .
  22. A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Physics Letters B 91, 99 (1980).
  23. A. A. Starobinsky, Nonsingular model of the universe with the quantum gravitational de sitter and its observational consequences, in Second Seminar on Quantum Gravity (1981).
  24. A. A. Starobinskii, Spectrum of relict gravitational radiation and the early state of the universe, ZhETF Pisma Redaktsiiu 30, 719 (1979).
  25. L. A. Kofman, V. F. Mukhanov, and D. I. Pogosian, The evolution of inhomogeneities in inflationary models in the theory of gravitation with higher derivatives, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 93, 769 (1987).
  26. J. c. Hwang and H. Noh, /f(R) gravity theory and CMBR constraints, Physics Letters B 506, 13 (2001), arXiv:astro-ph/0102423 [astro-ph] .
  27. A. Das, T. Paul, and S. SenGupta, Invisibility of antisymmetric tensor fields in the light of f⁢(r)𝑓𝑟f(r)italic_f ( italic_r ) gravity, Phys. Rev. D 98, 104002 (2018).
  28. M. W. Hossain and A. A. Sen, Do observations favour Galileon over quintessence?, Physics Letters B 713, 140 (2012), arXiv:1201.6192 [astro-ph.CO] .
  29. S. Brahma and M. W. Hossain, Dark energy beyond quintessence: constraints from the swampland, Journal of High Energy Physics 2019, 70 (2019), arXiv:1902.11014 [hep-th] .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com