Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DOCTOR: Dynamic On-Chip Temporal Variation Remediation Toward Self-Corrected Photonic Tensor Accelerators (2403.02688v2)

Published 5 Mar 2024 in cs.ET, cs.AI, and cs.LG

Abstract: Photonic computing has emerged as a promising solution for accelerating computation-intensive AI workloads, offering unparalleled speed and energy efficiency, especially in resource-limited, latency-sensitive edge computing environments. However, the deployment of analog photonic tensor accelerators encounters reliability challenges due to hardware noise and environmental variations. While off-chip noise-aware training and on-chip training have been proposed to enhance the variation tolerance of optical neural accelerators with moderate, static noise, we observe a notable performance degradation over time due to temporally drifting variations, which requires a real-time, in-situ calibration mechanism. To tackle this challenging reliability issues, for the first time, we propose a lightweight dynamic on-chip remediation framework, dubbed DOCTOR, providing adaptive, in-situ accuracy recovery against temporally drifting noise. The DOCTOR framework intelligently monitors the chip status using adaptive probing and performs fast in-situ training-free calibration to restore accuracy when necessary. Recognizing nonuniform spatial variation distributions across devices and tensor cores, we also propose a variation-aware architectural remapping strategy to avoid executing critical tasks on noisy devices. Extensive experiments show that our proposed framework can guarantee sustained performance under drifting variations with 34% higher accuracy and 2-3 orders-of-magnitude lower overhead compared to state-of-the-art on-chip training methods. Our code is open-sourced at https://github.com/ScopeX-ASU/DOCTOR.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Y. Shen, N. C. Harris, S. Skirlo et al., “Deep learning with coherent nanophotonic circuits,” Nature Photonics, 2017.
  2. Q. Cheng, J. Kwon, M. Glick, M. Bahadori, L. P. Carloni, and K. Bergman, “Silicon Photonics Codesign for Deep Learning,” Proceedings of the IEEE, 2020.
  3. B. J. Shastri, A. N. Tait et al., “Photonics for Artificial Intelligence and Neuromorphic Computing,” Nature Photonics, 2021.
  4. C. Feng, J. Gu, H. Zhu, Z. Ying, Z. Zhao et al., “A compact butterfly-style silicon photonic–electronic neural chip for hardware-efficient deep learning,” ACS Photonics, vol. 9, no. 12, pp. 3906–3916, 2022.
  5. W. Liu, W. Liu, Y. Ye, Q. Lou, Y. Xie, and L. Jiang, “Holylight: A nanophotonic accelerator for deep learning in data centers,” in Proc. DATE, 2019.
  6. J. Gu, H. Zhu, C. Feng, Z. Jiang, R. T. Chen, and D. Z. Pan, “M3ICRO: Machine learning-enabled compact photonic tensor core based on programmable multi-operand multimode interference,” APL Machine Learning, vol. 2, no. 1, p. 016106, Mar. 2024.
  7. X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, and D. J. Moss, “11 TOPS photonic convolutional accelerator for optical neural networks,” Nature, 2021.
  8. J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. L. Gallo, X. Fu, A. Lukashchuk, A. Raja, J. Liu, D. Wright, A. Sebastian, T. Kippenberg, W. Pernice, and H. Bhaskaran, “Parallel convolutional processing using an integrated photonic tensor core,” Nature, 2021.
  9. C. Huang, S. Bilodeau, T. Ferreira de Lima et al., “Demonstration of scalable microring weight bank control for large-scale photonic integrated circuits,” APL Photonics, vol. 5, no. 4, p. 040803, 2020.
  10. J. Gu, Z. Zhao, C. Feng, H. Zhu, R. T. Chen, and D. Z. Pan, “ROQ: A noise-aware quantization scheme towards robust optical neural networks with low-bit controls,” in Proc. DATE, 2020.
  11. Z. Zhao, J. Gu, Z. Ying et al., “Design technology for scalable and robust photonic integrated circuits,” in Proc. ICCAD, 2019.
  12. Y. Zhu, G. L. Zhang, B. Li et al., “Countering Variations and Thermal Effects for Accurate Optical Neural Networks,” in Proc. ICCAD, 2020.
  13. A. Mirza, F. Sunny et al., “Silicon photonic microring resonators: A comprehensive design-space exploration and optimization under fabrication-process variations,” IEEE TCAD, vol. 41, no. 10, pp. 3359–3372, 2022.
  14. A. N. Tait, T. F. de Lima, E. Zhou et al., “Neuromorphic photonic networks using silicon photonic weight banks,” Sci. Rep., 2017.
  15. D. Liu, Z. Zhao, Z. Wang, Z. Ying, R. T. Chen, and D. Z. Pan, “Operon: Optical-electrical power-efficient route synthesis for on-chip signals,” in Proc. DAC, 2018.
  16. J. Gu, C. Feng, Z. Zhao, Z. Ying, M. Liu, R. T. Chen, and D. Z. Pan, “SqueezeLight: Towards Scalable Optical Neural Networks with Multi-Operand Ring Resonators,” in Proc. DATE, 2021.
  17. J. Gu, Z. Zhao, C. Feng, W. Li, R. T. Chen, and D. Z. Pan, “FLOPS: Efficient On-Chip Learning for Optical Neural Networks Through Stochastic Zeroth-Order Optimization,” in Proc. DAC, 2020.
  18. J. Gu, C. Feng, Z. Zhao, Z. Ying, R. T. Chen, and D. Z. Pan, “Efficient on-chip learning for optical neural networks through power-aware sparse zeroth-order optimization,” in Proc. AAAI, 2021.
  19. J. Gu, H. Zhu, C. Feng, Z. Jiang, R. T. Chen, and D. Z. Pan, “L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization,” in Proc. NeurIPS, 2021.
  20. L. G. Wright, T. Onodera et al., “Deep physical neural networks trained with backpropagation,” Nature, vol. 601, no. 7894, pp. 549–555, Jan. 2022.
  21. S. Pai, Z. Sun, T. W. Hughes et al., “Experimentally realized in situ backpropagation for deep learning in photonic neural networks,” Science, vol. 380, no. 6643, pp. 398–404, Apr. 2023.
  22. Y. Ye, J. Xu, X. Wu, W. Zhang, X. Wang, M. Nikdast, Z. Wang, and W. Liu, “System-Level Modeling and Analysis of Thermal Effects in Optical Networks-on-Chip,” IEEE Trans. VLSI Syst., vol. 21, no. 2, pp. 292–305, Feb. 2013.
  23. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics, vol. 3, no. 4-5, pp. 269–281, Aug. 2014.
  24. M. Milanizadeh, D. Aguiar, A. Melloni, and F. Morichetti, “Canceling Thermal Cross-Talk Effects in Photonic Integrated Circuits,” J. Lightwave Technol., vol. 37, no. 4, pp. 1325–1332, Feb. 2019.
  25. M. Y.-S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, and M. R. DeWeese, “Design of optical neural networks with component imprecisions,” Opt. Express, vol. 27, no. 10, p. 14009, May 2019.
  26. F. Sunny, A. Mirza, M. Nikdast, and S. Pasricha, “Crosslight: A cross-layer optimized silicon photonic neural network accelerator,” in Proc. DAC, 2021.
  27. H. Jayatilleka, K. Murray, M. Caverley, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in soi microring resonator-based filters,” Journal of Lightwave Technology, vol. 34, no. 12, pp. 2886–2896, 2016.
  28. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photon. Rev., vol. 6, no. 1, pp. 47–73, Jan. 2012.
  29. A. Cem, D. Sanchez-Jacome, D. Pérez-López, and F. Da Ros, “Thermal crosstalk modeling and compensation for programmable photonic processors,” in IEEE Photonic Conference, 2023.

Summary

We haven't generated a summary for this paper yet.