Extending echo state property for quantum reservoir computing (2403.02686v6)
Abstract: The echo state property (ESP) represents a fundamental concept in the reservoir computing (RC) framework that ensures output-only training of reservoir networks by being agnostic to the initial states and far past inputs. However, the traditional definition of ESP does not describe possible non-stationary systems in which statistical properties evolve. To address this issue, we introduce two new categories of ESP: $\textit{non-stationary ESP}$, designed for potentially non-stationary systems, and $\textit{subspace/subset ESP}$, designed for systems whose subsystems have ESP. Following the definitions, we numerically demonstrate the correspondence between non-stationary ESP in the quantum reservoir computer (QRC) framework with typical Hamiltonian dynamics and input encoding methods using non-linear autoregressive moving-average (NARMA) tasks. We also confirm the correspondence by computing linear/non-linear memory capacities that quantify input-dependent components within reservoir states. Our study presents a new understanding of the practical design of QRC and other possibly non-stationary RC systems in which non-stationary systems and subsystems are exploited.
- K. Nakajima, Japanese Journal of Applied Physics 59, 060501 (2020).
- H. Jaeger, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148 (2001a).
- I. B. Yildiz, H. Jaeger, and S. J. Kiebel, Neural networks 35, 1 (2012).
- J. Preskill, Quantum 2, 79 (2018).
- K. Fujii and K. Nakajima, Physical Review Applied 8, 10.1103/physrevapplied.8.024030 (2017).
- Q. H. Tran and K. Nakajima, Phys. Rev. Lett. 127, 260401 (2021).
- Q. H. Tran and K. Nakajima, Higher-order quantum reservoir computing (2020), arXiv:2006.08999 [quant-ph] .
- Q. H. Tran, S. Ghosh, and K. Nakajima, Phys. Rev. Res. 5, 043127 (2023).
- S. Ghosh, T. Paterek, and T. C. H. Liew, Phys. Rev. Lett. 123, 260404 (2019b).
- J. Chen, H. I. Nurdin, and N. Yamamoto, Physical Review Applied 14, 10.1103/physrevapplied.14.024065 (2020).
- R. Martínez-Peña and J.-P. Ortega, Physical Review E 107, 10.1103/physreve.107.035306 (2023).
- H. Jaeger, Short term memory in echo state networks (GMD Forschungszentrum Informationstechnik, 2001).
- D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975).
- A. Atiya and A. Parlos, IEEE Transactions on Neural Networks 11, 697 (2000).
- T. Kubota, H. Takahashi, and K. Nakajima, Phys. Rev. Res. 3, 043135 (2021).