Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SGD with Partial Hessian for Deep Neural Networks Optimization (2403.02681v1)

Published 5 Mar 2024 in cs.LG and math.OC

Abstract: Due to the effectiveness of second-order algorithms in solving classical optimization problems, designing second-order optimizers to train deep neural networks (DNNs) has attracted much research interest in recent years. However, because of the very high dimension of intermediate features in DNNs, it is difficult to directly compute and store the Hessian matrix for network optimization. Most of the previous second-order methods approximate the Hessian information imprecisely, resulting in unstable performance. In this work, we propose a compound optimizer, which is a combination of a second-order optimizer with a precise partial Hessian matrix for updating channel-wise parameters and the first-order stochastic gradient descent (SGD) optimizer for updating the other parameters. We show that the associated Hessian matrices of channel-wise parameters are diagonal and can be extracted directly and precisely from Hessian-free methods. The proposed method, namely SGD with Partial Hessian (SGD-PH), inherits the advantages of both first-order and second-order optimizers. Compared with first-order optimizers, it adopts a certain amount of information from the Hessian matrix to assist optimization, while compared with the existing second-order optimizers, it keeps the good generalization performance of first-order optimizers. Experiments on image classification tasks demonstrate the effectiveness of our proposed optimizer SGD-PH. The code is publicly available at \url{https://github.com/myingysun/SGDPH}.

Summary

We haven't generated a summary for this paper yet.