Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BSDP: Brain-inspired Streaming Dual-level Perturbations for Online Open World Object Detection (2403.02637v1)

Published 5 Mar 2024 in cs.CV

Abstract: Humans can easily distinguish the known and unknown categories and can recognize the unknown object by learning it once instead of repeating it many times without forgetting the learned object. Hence, we aim to make deep learning models simulate the way people learn. We refer to such a learning manner as OnLine Open World Object Detection(OLOWOD). Existing OWOD approaches pay more attention to the identification of unknown categories, while the incremental learning part is also very important. Besides, some neuroscience research shows that specific noises allow the brain to form new connections and neural pathways which may improve learning speed and efficiency. In this paper, we take the dual-level information of old samples as perturbations on new samples to make the model good at learning new knowledge without forgetting the old knowledge. Therefore, we propose a simple plug-and-play method, called Brain-inspired Streaming Dual-level Perturbations(BSDP), to solve the OLOWOD problem. Specifically, (1) we first calculate the prototypes of previous categories and use the distance between samples and the prototypes as the sample selecting strategy to choose old samples for replay; (2) then take the prototypes as the streaming feature-level perturbations of new samples, so as to improve the plasticity of the model through revisiting the old knowledge; (3) and also use the distribution of the features of the old category samples to generate adversarial data in the form of streams as the data-level perturbations to enhance the robustness of the model to new categories. We empirically evaluate BSDP on PASCAL VOC and MS-COCO, and the excellent results demonstrate the promising performance of our proposed method and learning manner.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisserman, “The pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.
  2. T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in context,” in Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, ser. Lecture Notes in Computer Science, D. J. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., vol. 8693.   Springer, 2014, pp. 740–755.
  3. M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The sequential learning problem,” in Psychology of learning and motivation.   Elsevier, 1989, vol. 24, pp. 109–165.
  4. A. V. Robins, “Catastrophic forgetting in neural networks: the role of rehearsal mechanisms,” in First New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, ANNES ’93, Dunedin, New Zealand, November 24-26, 1993.   IEEE, 1993, pp. 65–68.
  5. K. Shmelkov, C. Schmid, and K. Alahari, “Incremental learning of object detectors without catastrophic forgetting,” in IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.   IEEE Computer Society, 2017, pp. 3420–3429.
  6. R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Naemura, “Classification-reconstruction learning for open-set recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019.   Computer Vision Foundation / IEEE, 2019, pp. 4016–4025.
  7. A. R. Dhamija, M. Günther, J. Ventura, and T. E. Boult, “The overlooked elephant of object detection: Open set,” in IEEE Winter Conference on Applications of Computer Vision, WACV 2020, Snowmass Village, CO, USA, March 1-5, 2020.   IEEE, 2020, pp. 1010–1019.
  8. K. J. Joseph, S. H. Khan, F. S. Khan, and V. N. Balasubramanian, “Towards open world object detection,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021.   Computer Vision Foundation / IEEE, 2021, pp. 5830–5840.
  9. J. Yu, L. Ma, Z. Li, Y. Peng, and S. Xie, “Open-world object detection via discriminative class prototype learning,” in 2022 IEEE International Conference on Image Processing, ICIP 2022, Bordeaux, France, 16-19 October 2022.   IEEE, 2022, pp. 626–630.
  10. A. Bendale and T. E. Boult, “Towards open world recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015.   IEEE Computer Society, 2015, pp. 1893–1902.
  11. S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017.
  12. Z. Li and D. Hoiem, “Learning without forgetting,” in Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, ser. Lecture Notes in Computer Science, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., vol. 9908.   Springer, 2016, pp. 614–629.
  13. S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and representation learning,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017.   IEEE Computer Society, 2017, pp. 5533–5542.
  14. C. Peng, K. Zhao, and B. C. Lovell, “Faster ILOD: incremental learning for object detectors based on faster RCNN,” Pattern Recognit. Lett., vol. 140, pp. 109–115, 2020.
  15. K. J. Joseph, J. Rajasegaran, S. H. Khan, F. S. Khan, and V. N. Balasubramanian, “Incremental object detection via meta-learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 9209–9216, 2022.
  16. J. Serrà, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catastrophic forgetting with hard attention to the task,” in Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning Research, J. G. Dy and A. Krause, Eds., vol. 80.   PMLR, 2018, pp. 4555–4564.
  17. R. Tiwari, K. Killamsetty, R. K. Iyer, and P. Shenoy, “GCR: gradient coreset based replay buffer selection for continual learning,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 99–108.
  18. Q. Sun, F. Lyu, F. Shang, W. Feng, and L. Wan, “Exploring example influence in continual learning,” in Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022, pp. 27 075–27 086.
  19. Y. Gu, X. Yang, K. Wei, and C. Deng, “Not just selection, but exploration: Online class-incremental continual learning via dual view consistency,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.   IEEE, 2022, pp. 7432–7441.
  20. J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” Proceedings of the National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.
  21. R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory aware synapses: Learning what (not) to forget,” in Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III, ser. Lecture Notes in Computer Science, vol. 11207.   Springer, 2018, pp. 144–161.
  22. A. Bendale and T. E. Boult, “Towards open set deep networks,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.   IEEE Computer Society, 2016, pp. 1563–1572.
  23. A. Bansal, K. Sikka, G. Sharma, R. Chellappa, and A. Divakaran, “Zero-shot object detection,” in Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part I, ser. Lecture Notes in Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., vol. 11205.   Springer, 2018, pp. 397–414.
  24. D. Miller, L. Nicholson, F. Dayoub, and N. Sünderhauf, “Dropout sampling for robust object detection in open-set conditions,” in 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018.   IEEE, 2018, pp. 1–7.
  25. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.   IEEE Computer Society, 2016, pp. 770–778.
  26. Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2 github,” https://github.com/facebookresearch/detectron2, 2019.
  27. M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro, “Learning to learn without forgetting by maximizing transfer and minimizing interference,” in 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.   OpenReview.net, 2019, pp. 1–31.
  28. H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 2990–2999.
  29. J. Ramapuram, M. Gregorova, and A. Kalousis, “Lifelong generative modeling,” Neurocomputing, vol. 404, pp. 381–400, 2020.
  30. S. M. Miller and A. Sahay, “Functions of adult-born neurons in hippocampal memory interference and indexing,” Nature neuroscience, vol. 22, no. 10, pp. 1565–1575, 2019.
  31. O. Van der Groen, W. Potok, N. Wenderoth, G. Edwards, J. B. Mattingley, and D. Edwards, “Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior,” Neuroscience & Biobehavioral Reviews, vol. 138, p. 104702, 2022.
  32. D. A. McCormick, “Spontaneous activity: signal or noise?” Science, vol. 285, no. 5427, pp. 541–543, 1999.
  33. Z. Wang, Q. Xu, Z. Yang, Y. He, X. Cao, and Q. Huang, “Openauc: Towards auc-oriented open-set recognition,” in Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022, pp. 25 033–25 045.
  34. J. Lu, Y. Xu, H. Li, Z. Cheng, and Y. Niu, “PMAL: open set recognition via robust prototype mining,” in Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022.   AAAI Press, 2022, pp. 1872–1880.
  35. S. Kong and D. Ramanan, “Opengan: Open-set recognition via open data generation,” in 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021.   IEEE, 2021, pp. 793–802.
  36. J. Wang, X. Wang, Y. Shang-Guan, and A. Gupta, “Wanderlust: Online continual object detection in the real world,” in 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021.   IEEE, 2021, pp. 10 809–10 818.
  37. T. Cokelaer, “Fitter github,” https://github.com/cokelaer/fitter, 2014.
  38. D. Yang, Y. Zhou, A. Zhang, X. Sun, D. Wu, W. Wang, and Q. Ye, “Multi-view correlation distillation for incremental object detection,” Pattern Recognition, vol. 131, p. 108863, 2022.
  39. C. Zhuang, S. Huang, G. Cheng, and J. Ning, “Multi-criteria selection of rehearsal samples for continual learning,” Pattern Recognition, vol. 132, p. 108907, 2022.
  40. C. Ma, X. Pan, Q. Ye, F. Tang, W. Dong, and C. Xu, “Crossrectify: Leveraging disagreement for semi-supervised object detection,” Pattern Recognition, vol. 137, p. 109280, 2023.
  41. Y. Guo, H. Yu, S. Xie, L. Ma, X. Cao, and X. Luo, “Dsca: A dual semantic correlation alignment method for domain adaptation object detection,” Pattern Recognition, vol. 150, p. 110329, 2024.
  42. W. Sun, Q. Li, J. Zhang, D. Wang, W. Wang, and Y. ao Geng, “Exemplar-free class incremental learning via discriminative and comparable parallel one-class classifiers,” Pattern Recognition, vol. 140, p. 109561, 2023.
  43. N. Dong, Y. Zhang, M. Ding, and Y. Bai, “Class-incremental object detection,” Pattern Recognition, vol. 139, p. 109488, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.