Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning-augmented Online Minimization of Age of Information and Transmission Costs (2403.02573v2)

Published 5 Mar 2024 in cs.LG

Abstract: We consider a discrete-time system where a resource-constrained source (e.g., a small sensor) transmits its time-sensitive data to a destination over a time-varying wireless channel. Each transmission incurs a fixed transmission cost (e.g., energy cost), and no transmission results in a staleness cost represented by the Age-of-Information. The source must balance the tradeoff between transmission and staleness costs. To address this challenge, we develop a robust online algorithm to minimize the sum of transmission and staleness costs, ensuring a worst-case performance guarantee. While online algorithms are robust, they are usually overly conservative and may have a poor average performance in typical scenarios. In contrast, by leveraging historical data and prediction models, ML algorithms perform well in average cases. However, they typically lack worst-case performance guarantees. To achieve the best of both worlds, we design a learning-augmented online algorithm that exhibits two desired properties: (i) consistency: closely approximating the optimal offline algorithm when the ML prediction is accurate and trusted; (ii) robustness: ensuring worst-case performance guarantee even ML predictions are inaccurate. Finally, we perform extensive simulations to show that our online algorithm performs well empirically and that our learning-augmented algorithm achieves both consistency and robustness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Z. Liu, K. Zhang, B. Li, Y. Sun, T. Hou, and B. Ji, “Learning-augmented online minimization of age of information and transmission costs,” in IEEE INFOCOM WKSHPS: ASoI 2024: IEEE INFOCOM Age and Semantics of Information Workshop (INFOCOM ASoI 2024), Vancouver, Canada, May 2024, p. 7.98.
  2. S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information systems frontiers, vol. 17, pp. 243–259, 2015.
  3. F. Wu, C. Rüdiger, and M. R. Yuce, “Real-time performance of a self-powered environmental iot sensor network system,” Sensors, vol. 17, no. 2, p. 282, 2017.
  4. X. Cao, J. Wang, Y. Cheng, and J. Jin, “Optimal sleep scheduling for energy-efficient aoi optimization in industrial internet of things,” IEEE Internet of Things Journal, vol. 10, no. 11, pp. 9662–9674, 2023.
  5. B. Yu, Y. Cai, X. Diao, and K. Cheng, “Adaptive packet length adjustment for minimizing age of information over fading channels,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  6. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in 2012 IEEE INFOCOM, 2012, pp. 2731–2735.
  7. Y.-H. Tseng and Y.-P. Hsu, “Online energy-efficient scheduling for timely information downloads in mobile networks,” in 2019 ISIT, 2019, pp. 1022–1026.
  8. A. R. Karlin, C. Kenyon, and D. Randall, “Dynamic tcp acknowledgement and other stories about e/(e-1),” in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, ser. STOC ’01.   New York, NY, USA: Association for Computing Machinery, 2001, p. 502–509.
  9. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE JSAC, vol. 39, no. 5, pp. 1183–1210, 2021.
  10. E. Fountoulakis, N. Pappas, M. Codreanu, and A. Ephremides, “Optimal sampling cost in wireless networks with age of information constraints,” in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2020, pp. 918–923.
  11. Z. Liu, B. Li, Z. Zheng, Y. T. Hou, and B. Ji, “Towards optimal tradeoff between data freshness and update cost in information-update systems,” IEEE Internet of Things Journal, pp. 1–1, 2023.
  12. K. Saurav and R. Vaze, “Minimizing the sum of age of information and transmission cost under stochastic arrival model,” in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, 2021, pp. 1–10.
  13. A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Optimal sampling and scheduling for timely status updates in multi-source networks,” IEEE TIT, vol. 67, no. 6, pp. 4019–4034, 2021.
  14. A. Sinha and R. Bhattacharjee, “Optimizing age-of-information in adversarial and stochastic environments,” IEEE Transactions on Information Theory, vol. 68, no. 10, pp. 6860–6880, 2022.
  15. S. Banerjee and S. Ulukus, “Age of information in the presence of an adversary,” in IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2022, pp. 1–8.
  16. S. Li, C. Li, Y. Huang, B. A. Jalaian, Y. T. Hou, and W. Lou, “Enhancing resilience in mobile edge computing under processing uncertainty,” IEEE JSAC, vol. 41, no. 3, pp. 659–674, 2023.
  17. T. Lykouris and S. Vassilvitskii, “Competitive caching with machine learned advice,” J. ACM, vol. 68, no. 4, jul 2021.
  18. M. Purohit, Z. Svitkina, and R. Kumar, “Improving online algorithms via ml predictions,” in Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31.   Curran Associates, Inc., 2018.
  19. E. Bamas, A. Maggiori, and O. Svensson, “The primal-dual method for learning augmented algorithms,” Advances in Neural Information Processing Systems, vol. 33, pp. 20 083–20 094, 2020.
  20. D. Rutten, N. Christianson, D. Mukherjee, and A. Wierman, “Smoothed online optimization with unreliable predictions,” Proc. ACM Meas. Anal. Comput. Syst., vol. 7, no. 1, mar 2023.
  21. N. Buchbinder, J. S. Naor et al., “The design of competitive online algorithms via a primal–dual approach,” Foundations and Trends® in Theoretical Computer Science, vol. 3, no. 2–3, pp. 93–263, 2009.
  22. A. Narayanan, E. Ramadan, R. Mehta, X. Hu, Q. Liu, R. A. Fezeu, U. K. Dayalan, S. Verma, P. Ji, T. Li et al., “Lumos5g: Mapping and predicting commercial mmwave 5g throughput,” in Proceedings of the ACM Internet Measurement Conference, 2020, pp. 176–193.
Citations (1)

Summary

We haven't generated a summary for this paper yet.