Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fill Probabilities in a Limit Order Book with State-Dependent Stochastic Order Flows (2403.02572v1)

Published 5 Mar 2024 in q-fin.TR, math.PR, and q-fin.CP

Abstract: This paper focuses on computing the fill probabilities for limit orders positioned at various price levels within the limit order book, which play a crucial role in optimizing executions. We adopt a generic stochastic model to capture the dynamics of the order book as a series of queueing systems. This generic model is state-dependent and also incorporates stylized factors. We subsequently derive semi-analytical expressions to compute the relevant probabilities within the context of state-dependent stochastic order flows. These probabilities cover various scenarios, including the probability of a change in the mid-price, the fill probabilities of orders posted at the best quotes, and those posted at a price level deeper than the best quotes in the book, before the opposite best quote moves. These expressions can be further generalized to accommodate orders posted even deeper in the order book, although the associated probabilities are typically very small in such cases. Lastly, we conduct extensive numerical experiments using real order book data from the foreign exchange spot market. Our findings suggest that the model is tractable and possesses the capability to effectively capture the dynamics of the limit order book. Moreover, the derived formulas and numerical methods demonstrate reasonably good accuracy in estimating the fill probabilities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.