PDQMA = DQMA = NEXP: QMA With Hidden Variables and Non-collapsing Measurements (2403.02543v2)
Abstract: We define and study a variant of QMA (Quantum Merlin Arthur) in which Arthur can make multiple non-collapsing measurements to Merlin's witness state, in addition to ordinary collapsing measurements. By analogy to the class PDQP defined by Aaronson, Bouland, Fitzsimons, and Lee (2014), we call this class PDQMA. Our main result is that PDQMA = NEXP; this result builds on the PCP theorem and complements the result of Aaronson (2018) that PDQP/qpoly = ALL. While the result has little to do with quantum mechanics, we also show a more "quantum" result: namely, that QMA with the ability to inspect the entire history of a hidden variable is equal to NEXP, under mild assumptions on the hidden-variable theory. We also observe that a quantum computer, augmented with quantum advice and the ability to inspect the history of a hidden variable, can solve any decision problem in polynomial time.
- S. Aaronson. Quantum Lower Bound for the Collision Problem. In Proc. ACM STOC, pages 635–642, 2002. quant-ph/0111102.
- S. Aaronson. Is Quantum Mechanics An Island In Theoryspace? In A. Khrennikov, editor, Proceedings of the Växjö Conference “Quantum Theory: Reconsideration of Foundations”, 2004. quant-ph/0401062.
- S. Aaronson. Limitations of Quantum Advice and One-Way Communication. Theory of Computing, 1:1–28, 2005. Earlier version in CCC’2004. quant-ph/0402095.
- S. Aaronson. Quantum Computing and Hidden Variables. Phys. Rev. A, 71(032325), 2005. quant-ph/0408035 and quant-ph/0408119.
- S. Aaronson. Quantum Computing, Postselection, and Probabilistic Polynomial-Time. Proc. Roy. Soc. London, A461(2063):3473–3482, 2005. quant-ph/0412187.
- S. Aaronson. PDQP/qpoly = ALL. arXiv:1805.08577, 2018.
- The space “just above” BQP. In Proc. Innovations in Theoretical Computer Science (ITCS), pages 271–280, 2016. arXiv:1412.6507.
- S. Aaronson and A. Drucker. A Full Characterization of Quantum Advice. SIAM J. Comput., 43(3):1131–1183, 2014. Earlier version in STOC’2010. arXiv:1004.0377.
- D. S. Abrams and S. Lloyd. Nonlinear quantum mechanics implies polynomial-time solution for 𝖭𝖯𝖭𝖯\mathsf{NP}sansserif_NP-complete and #𝖯#𝖯\mathsf{\#P}# sansserif_P problems. Phys. Rev. Lett., 81:3992–3995, 1998. quant-ph/9801041.
- Proof Verification and the Hardness of Approximation Problems. J. of the ACM, 45(3):501–555, 1998. doi:10.1145/278298.278306.
- D. Aharonov and O. Regev. A Lattice Problem in Quantum 𝖭𝖯𝖭𝖯\mathsf{NP}sansserif_NP. In Proc. IEEE FOCS, pages 210–219, 2003. quant-ph/0307220.
- S. Arora and S. Safra. Probabilistic Checking of Proofs: A New Characterization of 𝖭𝖯𝖭𝖯\mathsf{NP}sansserif_NP. Journal of the ACM (JACM), 45(1):70–122, 1998. doi:10.1145/273865.273901.
- S. Aaronson and J. Watrous. Closed Timelike Curves Make Quantum and Classical Computing Equivalent. Proc. Roy. Soc. London, A465:631–647, 2009. arXiv:0808.2669.
- The computational landscape of general physical theories. npj Quantum Information, 5(1):41, 2019. doi:10.1038/s41534-019-0156-9.
- Nondeterministic exponential time has two-prover interactive protocols. Computational Complexity, 1(1):3–40, 1991. doi:10.1007/BF01200056.
- Quantum merlin-arthur and proofs without relative phase, 2023. arXiv:2306.13247.
- R. Bassirian and K. Marwaha. Superposition detection and 𝖰𝖬𝖠𝖰𝖬𝖠\mathsf{QMA}sansserif_QMA with non-collapsing measurements, 2024.
- F. G. Jeronimo and P. Wu. The Power of Unentangled Quantum Proofs with Non-Negative Amplitudes. In Proc. ACM STOC, page 1629–1642, 2023. doi:10.1145/3564246.3585248.
- C. M. Lee and J. Barrett. Computation in generalised probabilisitic theories. New Journal of Physics, 17(8):083001, 2015. doi:10.1088/1367-2630/17/8/083001.
- R. Raz. Quantum Information and the 𝖯𝖢𝖯𝖯𝖢𝖯\mathsf{PCP}sansserif_PCP Theorem. Algorithmica, 55(3):462–489, 2009. Earlier version in FOCS’2005. quant-ph/0504075.
- T. Rudolph and L. Grover. A 2 rebit gate universal for quantum computing, 2002. arXiv:quant-ph/0210187.
- A. Ta-Shma. A note on 𝖯𝖢𝖯𝖯𝖢𝖯\mathsf{PCP}sansserif_PCP vs. 𝖬𝖨𝖯𝖬𝖨𝖯\mathsf{MIP}sansserif_MIP. Information Processing Letters, 58(3):135–140, 1996. doi:10.1016/0020-0190(96)00043-9.