Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Superposition detection and QMA with non-collapsing measurements (2403.02532v1)

Published 4 Mar 2024 in quant-ph and cs.CC

Abstract: We prove that QMA where the verifier may also make a single non-collapsing measurement is equal to NEXP, resolving an open question of Aaronson. We show this is a corollary to a modified proof of QMA+ = NEXP [arXiv:2306.13247]. At the core of many results inspired by Blier and Tapp [arXiv:0709.0738] is an unphysical property testing problem deciding whether a quantum state is close to an element of a fixed basis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Scott Aaronson. Quantum Computing, Postselection, and Probabilistic Polynomial-Time, 2004. arXiv:quant-ph/0412187.
  2. Scott Aaronson. Limitations of Quantum Advice and One-Way Communication. Theory of Computing, 1(1):1–28, 2005. arXiv:quant-ph/0402095.
  3. Scott Aaronson. Quantum computing and hidden variables. Phys. Rev. A, 71:032325, Mar 2005. URL https://doi.org/10.1103/PhysRevA.71.032325.
  4. Scott Aaronson. PDQP/qpoly = ALL, 2018. arXiv:1805.08577.
  5. Scott Aaronson. Quantum miscellany — Shtetl-Optimized, 2023. URL https://scottaaronson.blog/?p=7516. [Online; accessed 10-February-2024].
  6. The Power of Unentanglement, 2008. arXiv:0804.0802.
  7. The space "just above" BQP, 2014. arXiv:1412.6507.
  8. A Full Characterization of Quantum Advice, 2013. arXiv:1004.0377.
  9. PDQMA = DQMA = NEXP: QMA With Hidden Variables and Non-collapsing Measurements, 2024. URL TBA.
  10. On the hardness of conversion from entangled proof into separable one, 2024. arXiv:2402.08981.
  11. Proof Verification and the Hardness of Approximation Problems. J. ACM, 45(3):501–555, 1998. URL https://doi.org/10.1145/278298.278306.
  12. A Lattice Problem in Quantum NP, 2003. arXiv:quant-ph/0307220.
  13. Probabilistic Checking of Proofs; A New Characterization of NP. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 2–13. IEEE Computer Society, 1992. URL https://doi.org/10.1109/SFCS.1992.267824.
  14. Nondeterministic exponential time has two-prover interactive protocols. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science, SFCS ’90, page 16–25 vol.1, USA, 1990. IEEE Computer Society. URL https://doi.org/10.1109/FSCS.1990.89520.
  15. Quantum Merlin-Arthur and proofs without relative phase, 2023. arXiv:2306.13247.
  16. A quantum characterization of NP, 2010. arXiv:0709.0738.
  17. Short multi-prover quantum proofs for SAT without entangled measurements, 2010. arXiv:1011.0716.
  18. Improved soundness for QMA with multiple provers, 2011. arXiv:1108.2098.
  19. Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM (JACM), 54(3):12–es, 2007. URL https://dl.acm.org/doi/abs/10.1145/1236457.1236459.
  20. Christopher A. Fuchs and Jeroen van de Graaf. Cryptographic Distinguishability Measures for Quantum Mechanical States, 1998. arXiv:quant-ph/9712042.
  21. Sevag Gharibian. Guest Column: The 7 faces of quantum NP. ACM SIGACT News, 54(4):54–91, December 2023. arXiv:2310.18010.
  22. On QMA protocols with two short quantum proofs. Quantum Inf. Comput., 12(7-8):589–600, 2012. URL https://doi.org/10.26421/QIC12.7-8-4.
  23. Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2), 2018. arXiv:1805.11139.
  24. Prahladh Harsha. Robust PCPs of proximity and shorter PCPs. PhD thesis, Massachusetts Institute of Technology, 2004. URL https://dspace.mit.edu/bitstream/handle/1721.1/26720/59552830-MIT.pdf.
  25. Testing product states, quantum Merlin-Arthur games and tensor optimization. Journal of the ACM (JACM), 60(1):1–43, 2013. arXiv:1001.0017.
  26. Rewindable Quantum Computation and Its Equivalence to Cloning and Adaptive Postselection, 2023. arXiv:2206.05434.
  27. The Power of Unentangled Quantum Proofs with Non-negative Amplitudes. 55th Annual ACM Symposium on Theory of Computing, 2023. URL https://doi.org/10.1145/3564246.3585248.
  28. Dimension Independent Disentanglers from Unentanglement and Applications, 2024. arXiv:2402.15282.
  29. Yusuke Kinoshita. QMA(2) with postselection equals to NEXP, 2018. arXiv:1806.09732.
  30. Quantum Merlin-Arthur Proof Systems: Are Multiple Merlins More Helpful to Arthur?, 2003. arXiv:quant-ph/0306051.
  31. Quantum Arthur-Merlin Games, 2005. arXiv:cs/0506068.
  32. Fast Amplification of QMA, 2009. arXiv:0904.1549.
  33. Attila Pereszlényi. Multi-Prover Quantum Merlin-Arthur Proof Systems with Small Gap, 2012. arXiv:1205.2761.
  34. Unitary property testing lower bounds by polynomials, 2022. arXiv:2210.05885.
Citations (2)

Summary

We haven't generated a summary for this paper yet.