Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end variational quantum sensing (2403.02394v2)

Published 4 Mar 2024 in quant-ph and physics.comp-ph

Abstract: Harnessing quantum correlations can enable sensing beyond the classical limits of precision, with the realization of such sensors poised for transformative impacts across science and engineering. Real devices, however, face the accumulated impacts of noise effects, architecture constraints, and finite sampling rates, making the design and success of practical quantum sensors challenging. Numerical and theoretical frameworks that support the optimization and analysis of imperfections from one end of a sensing protocol through to the other (i.e., from probe state preparation through to parameter estimation) are thus crucial for translating quantum advantage into widespread practice. Here, we present an end-to-end variational framework for quantum sensing protocols, where parameterized quantum circuits and neural networks form trainable, adaptive models for quantum sensor dynamics and estimation, respectively. The framework is general and can be adapted towards arbitrary qubit architectures, as we demonstrate with experimentally-relevant ans\"atze for trapped-ion and photonic systems, and enables to directly quantify the impacts that noisy state preparation/measurement and finite data sampling have on parameter estimation. End-to-end variational frameworks can thus underpin powerful design and analysis tools for realizing quantum advantage in practical, robust sensors.

Citations (2)

Summary

We haven't generated a summary for this paper yet.