Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Computing: Vision and Challenges (2403.02240v4)

Published 4 Mar 2024 in cs.DC, cs.ET, and quant-ph

Abstract: The recent development of quantum computing, which uses entanglement, superposition, and other quantum fundamental concepts, can provide substantial processing advantages over traditional computing. These quantum features help solve many complex problems that cannot be solved otherwise with conventional computing methods. These problems include modeling quantum mechanics, logistics, chemical-based advances, drug design, statistical science, sustainable energy, banking, reliable communication, and quantum chemical engineering. The last few years have witnessed remarkable progress in quantum software and algorithm creation and quantum hardware research, which has significantly advanced the prospect of realizing quantum computers. It would be helpful to have comprehensive literature research on this area to grasp the current status and find outstanding problems that require considerable attention from the research community working in the quantum computing industry. To better understand quantum computing, this paper examines the foundations and vision based on current research in this area. We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers. Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. T. Hey, “Richard Feynman and computation,” Contemporary Physics, vol. 40, no. 4, pp. 257–265, 1999.
  2. J. Preskill, “Quantum computing 40 years later,” in Feynman Lectures on Computation, pp. 193–244, CRC Press, 2023.
  3. V. Silva, “Richard Feynman, demigod of physics, father of the quantum computer,” in Quantum Computing by Practice: Python Programming in the Cloud with Qiskit and IBM-Q, pp. 49–85, Springer, 2023.
  4. Z. Yang, M. Zolanvari, and R. Jain, “A survey of important issues in quantum computing and communications,” IEEE Communications Surveys & Tutorials, 2023.
  5. M. Mikkelsen, J. Berezovsky, N. Stoltz, L. Coldren, and D. Awschalom, “Optically detected coherent spin dynamics of a single electron in a quantum dot,” Nature Physics, vol. 3, no. 11, pp. 770–773, 2007.
  6. S. S. Gill, H. Wu, P. Patros, C. Ottaviani, P. Arora, V. C. Pujol, D. Haunschild, A. K. Parlikad, O. Cetinkaya, H. Lutfiyya, et al., “Modern computing: Vision and challenges,” Telematics and Informatics Reports, vol. 13, pp. 1–38, 2024.
  7. S. Nadj-Perge, S. Frolov, E. Bakkers, and L. P. Kouwenhoven, “Spin–orbit qubit in a semiconductor nanowire,” Nature, vol. 468, no. 7327, pp. 1084–1087, 2010.
  8. N. Hendrickx, W. Lawrie, L. Petit, A. Sammak, G. Scappucci, and M. Veldhorst, “A single-hole spin qubit,” Nature communications, vol. 11, no. 1, p. 3478, 2020.
  9. A. Vourdas, “Quantum systems with finite hilbert space,” Reports on Progress in Physics, vol. 67, no. 3, p. 267, 2004.
  10. M. Singh et al., “Quantum artificial intelligence for the science of climate change,” in Artificial Intelligence, Machine Learning and Blockchain in Quantum Satellite, Drone and Network, pp. 199–207, CRC Press, 2022.
  11. A. Kumar et al., “Securing the future internet of things with post-quantum cryptography,” Security and Privacy, vol. 5, no. 2, p. e200, 2022.
  12. S. Chen, J. Cotler, H.-Y. Huang, and J. Li, “The complexity of NISQ,” Nature Communications, vol. 14, no. 1, p. 6001, 2023.
  13. M. Piattini, M. Serrano, R. Perez-Castillo, G. Petersen, and J. L. Hevia, “Toward a quantum software engineering,” IT Professional, vol. 23, no. 1, pp. 62–66, 2021.
  14. J. Howard, A. Lidiak, C. Jameson, B. Basyildiz, K. Clark, T. Zhao, M. Bal, J. Long, D. P. Pappas, M. Singh, et al., “Implementing two-qubit gates at the quantum speed limit,” Physical Review Research, vol. 5, no. 4, p. 043194, 2023.
  15. M. AbuGhanem and H. Eleuch, “Two-qubit entangling gates for superconducting quantum computers,” Results in Physics, vol. 56, p. 107236, 2024.
  16. M. De Stefano, F. Pecorelli, D. Di Nucci, F. Palomba, and A. De Lucia, “Software engineering for quantum programming: How far are we?,” Journal of Systems and Software, vol. 190, p. 111326, 2022.
  17. M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature, vol. 410, no. 6830, pp. 789–793, 2001.
  18. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” nature, vol. 549, no. 7671, pp. 242–246, 2017.
  19. A. D. Córcoles, A. Kandala, A. Javadi-Abhari, D. T. McClure, A. W. Cross, K. Temme, P. D. Nation, M. Steffen, and J. M. Gambetta, “Challenges and opportunities of near-term quantum computing systems,” Proceedings of the IEEE, vol. 108, no. 8, pp. 1338–1352, 2019.
  20. M. Krenn, J. Landgraf, T. Foesel, and F. Marquardt, “Artificial intelligence and machine learning for quantum technologies,” Physical Review A, vol. 107, no. 1, p. 010101, 2023.
  21. M. Mafu and M. Senekane, “Design and implementation of efficient quantum support vector machine,” in 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), pp. 1–4, IEEE, 2021.
  22. P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical review letters, vol. 113, no. 13, p. 130503, 2014.
  23. C. Ding, T.-Y. Bao, and H.-L. Huang, “Quantum-inspired support vector machine,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 7210–7222, 2021.
  24. S. S. Gill and R. Kaur, “ChatGPT: Vision and challenges,” Internet of Things and Cyber-Physical Systems, vol. 3, pp. 262–271, 2023.
  25. S. Pirandola and S. L. Braunstein, “Physics: Unite to build a quantum internet,” Nature, vol. 532, no. 7598, pp. 169–171, 2016.
  26. G. G. Rozenman, N. K. Kundu, R. Liu, L. Zhang, A. Maslennikov, Y. Reches, and H. Y. Youm, “The quantum internet: A synergy of quantum information technologies and 6g networks,” IET Quantum Communication, vol. 4, no. 4, pp. 147–166, 2023.
  27. J. Illiano, M. Caleffi, A. Manzalini, and A. S. Cacciapuoti, “Quantum internet protocol stack: A comprehensive survey,” Computer Networks, vol. 213, p. 109092, 2022.
  28. A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, “Quantum internet: Networking challenges in distributed quantum computing,” IEEE Network, vol. 34, no. 1, pp. 137–143, 2019.
  29. S. S. Gill, “Quantum and blockchain based serverless edge computing: A vision, model, new trends and future directions,” Internet Technology Letters, p. e275, 2021.
  30. L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. Alonso Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner, and P. Walther, “Experimental superposition of orders of quantum gates,” Nature communications, vol. 6, no. 1, p. 7913, 2015.
  31. A. S. Rab, E. Polino, Z.-X. Man, N. Ba An, Y.-J. Xia, N. Spagnolo, R. Lo Franco, and F. Sciarrino, “Entanglement of photons in their dual wave-particle nature,” Nature communications, vol. 8, no. 1, p. 915, 2017.
  32. M. Ying, “Quantum computation, quantum theory and ai,” Artificial Intelligence, vol. 174, no. 2, pp. 162–176, 2010.
  33. R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. Netto, et al., “A manifesto for future generation cloud computing: Research directions for the next decade,” ACM Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–38, 2018.
  34. A. Singh, K. Dev, H. Siljak, H. D. Joshi, and M. Magarini, “Quantum internet—applications, functionalities, enabling technologies, challenges, and research directions,” IEEE Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2218–2247, 2021.
  35. N. P. De Leon, K. M. Itoh, D. Kim, K. K. Mehta, T. E. Northup, H. Paik, B. Palmer, N. Samarth, S. Sangtawesin, and D. W. Steuerman, “Materials challenges and opportunities for quantum computing hardware,” Science, vol. 372, no. 6539, p. eabb2823, 2021.
  36. W. Gilbert, T. Tanttu, W. H. Lim, M. Feng, J. Y. Huang, J. D. Cifuentes, S. Serrano, P. Y. Mai, R. C. Leon, C. C. Escott, et al., “On-demand electrical control of spin qubits,” Nature Nanotechnology, vol. 18, no. 2, pp. 131–136, 2023.
  37. S. S. Gill, A. Kumar, H. Singh, M. Singh, K. Kaur, M. Usman, and R. Buyya, “Quantum computing: A taxonomy, systematic review and future directions,” Software: Practice and Experience, vol. 52, no. 1, pp. 66–114, 2022.
  38. Y. Atia and D. Aharonov, “Fast-forwarding of hamiltonians and exponentially precise measurements,” Nature communications, vol. 8, no. 1, p. 1572, 2017.
  39. N. K. Parida, C. Jatoth, V. D. Reddy, M. M. Hussain, and J. Faizi, “Post-quantum distributed ledger technology: a systematic survey,” Scientific Reports, vol. 13, no. 1, p. 20729, 2023.
  40. V. Dixit and S. Jian, “Quantum Fourier transform to estimate drive cycles,” Scientific Reports, vol. 12, no. 1, p. 654, 2022.
  41. London: Springer London, 2011.
  42. W. Du, B. Li, and Y. Tian, “Quantum annealing algorithms: State of the art,” Jisuanji Yanjiu yu Fazhan/Computer Research and Development, vol. 45, no. 9, p. 1501 – 1508, 2008.
  43. M. A. Serrano, J. A. Cruz-Lemus, R. Perez-Castillo, and M. Piattini, “Quantum software components and platforms: Overview and quality assessment,” ACM Computing Surveys, vol. 55, no. 8, pp. 1–31, 2022.
  44. R. Pérez-Castillo, M. A. Serrano, and M. Piattini, “Software modernization to embrace quantum technology,” Advances in Engineering Software, vol. 151, p. 102933, 2021.
  45. D. Vietz, J. Barzen, F. Leymann, and K. Wild, “On decision support for quantum application developers: categorization, comparison, and analysis of existing technologies,” in International Conference on Computational Science, pp. 127–141, Springer, 2021.
  46. M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber, “Physics-inspired optimization for quadratic unconstrained problems using a digital annealer,” Frontiers in Physics, vol. 7, no. APR, 2019.
  47. T. Sasaki, Y. Yamamoto, and M. Koashi, “Practical quantum key distribution protocol without monitoring signal disturbance,” Nature, vol. 509, no. 7501, pp. 475–478, 2014.
  48. D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol. 549, no. 7671, pp. 188–194, 2017.
  49. C. R. García, S. Rommel, S. Takarabt, J. J. V. Olmos, S. Guilley, P. Nguyen, and I. T. Monroy, “Quantum-resistant transport layer security,” Computer Communications, vol. 213, pp. 345–358, 2024.
  50. M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error correction with superconducting circuits,” Nature, vol. 482, no. 7385, pp. 382–385, 2012.
  51. G. Q. AI, “Suppressing quantum errors by scaling a surface code logical qubit,” Nature, vol. 614, no. 7949, pp. 676–681, 2023.
  52. A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller, “Practical quantum advantage in quantum simulation,” Nature, vol. 607, no. 7920, pp. 667–676, 2022.
  53. S. Biswas and P. Das, “Analysis of quantum cryptology and the RSA algorithms defense against attacks using shor’s algorithm in a post quantum environment,” in International Conference on Computational Intelligence in Communications and Business Analytics, pp. 72–87, Springer, 2023.
  54. D. Claudino, B. Peng, K. Kowalski, and T. S. Humble, “Modeling singlet fission on a quantum computer,” The Journal of Physical Chemistry Letters, vol. 14, pp. 5511–5516, 2023.
  55. Y. Nam, J.-S. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini, J. Apisdorf, et al., “Ground-state energy estimation of the water molecule on a trapped-ion quantum computer,” npj Quantum Information, vol. 6, no. 1, p. 33, 2020.
  56. M. Sisodia, “Comparison the performance of five-qubit IBM quantum computers in terms of bell states preparation,” Quantum Information Processing, vol. 19, no. 8, p. 215, 2020.
  57. M. Motta, C. Sun, A. T. Tan, M. J. O’Rourke, E. Ye, A. J. Minnich, F. G. Brandao, and G. K.-L. Chan, “Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution,” Nature Physics, vol. 16, no. 2, pp. 205–210, 2020.
  58. S. Premaratne, S. Johri, X. Zou, R. Sagastizabal, M. A. Rol, B. Klaver, M. Moreira, C. Almudever, L. DiCarlo, and A. Matsuura, “Efficient variational generation of thermofield double states on a superconducting quantum processor: Theory (part 1),” Bulletin of the American Physical Society, vol. 65, 2020.
  59. A. Kumar et al., Quantum and Blockchain for Modern Computing Systems: Vision and Advancements. Springer, 2022.
  60. CRC Press, 2022.
  61. S. S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon, A. Shaghaghi, M. Golec, V. Stankovski, H. Wu, A. Abraham, et al., “Ai for next generation computing: Emerging trends and future directions,” Internet of Things, vol. 19, p. 100514, 2022.
  62. G. K. Walia et al., “AI-empowered fog/edge resource management for iot applications: A comprehensive review, research challenges and future perspectives,” IEEE Communications Surveys & Tutorials, 2023.
  63. A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy of dependable and secure computing,” IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, p. 11 – 33, 2004.
  64. A. Paler and S. J. Devitt, “An introduction into fault-tolerant quantum computing,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, 2015.
  65. R. Singh et al., “Edge AI: a survey,” Internet of Things and Cyber-Physical Systems, vol. 3, pp. 71–92, 2023.
  66. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science, vol. 362, no. 6412, p. eaam9288, 2018.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com