Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Dynamic Algorithm Selection: A Proof-of-Principle Study on Differential Evolution (2403.02131v3)

Published 4 Mar 2024 in cs.NE and cs.AI

Abstract: Evolutionary algorithms, such as Differential Evolution, excel in solving real-parameter optimization challenges. However, the effectiveness of a single algorithm varies across different problem instances, necessitating considerable efforts in algorithm selection or configuration. This paper aims to address the limitation by leveraging the complementary strengths of a group of algorithms and dynamically scheduling them throughout the optimization progress for specific problems. We propose a deep reinforcement learning-based dynamic algorithm selection framework to accomplish this task. Our approach models the dynamic algorithm selection a Markov Decision Process, training an agent in a policy gradient manner to select the most suitable algorithm according to the features observed during the optimization process. To empower the agent with the necessary information, our framework incorporates a thoughtful design of landscape and algorithmic features. Meanwhile, we employ a sophisticated deep neural network model to infer the optimal action, ensuring informed algorithm selections. Additionally, an algorithm context restoration mechanism is embedded to facilitate smooth switching among different algorithms. These mechanisms together enable our framework to seamlessly select and switch algorithms in a dynamic online fashion. Notably, the proposed framework is simple and generic, offering potential improvements across a broad spectrum of evolutionary algorithms. As a proof-of-principle study, we apply this framework to a group of Differential Evolution algorithms. The experimental results showcase the remarkable effectiveness of the proposed framework, not only enhancing the overall optimization performance but also demonstrating favorable generalization ability across different problem classes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. A. Slowik and H. Kwasnicka, “Evolutionary algorithms and their applications to engineering problems,” Neural Computing and Applications, vol. 32, no. 16, pp. 12 363–12 379, 2020.
  2. R. Storn and K. Price, “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, p. 341, 1997.
  3. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
  4. D. H. Wolpert, W. G. Macready et al., “No free lunch theorems for search,” Citeseer, Tech. Rep., 1995.
  5. P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated algorithm selection: Survey and perspectives,” Evolutionary Computation, vol. 27, no. 1, pp. 3–45, 2019.
  6. B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics approach to hard computational problems,” Science, vol. 275, no. 5296, pp. 51–54, 1997.
  7. C. P. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelligence, vol. 126, no. 1-2, pp. 43–62, 2001.
  8. C. Ansótegui, M. Sellmann, and K. Tierney, “A gender-based genetic algorithm for the automatic configuration of algorithms,” in Principles and Practice of Constraint Programming-CP 2009: 15th International Conference, CP 2009 Lisbon, Portugal, September 20-24, 2009 Proceedings 15, 2009, pp. 142–157.
  9. K. Xue, J. Xu, L. Yuan, M. Li, C. Qian, Z. Zhang, and Y. Yu, “Multi-agent dynamic algorithm configuration,” in Advances in Neural Information Processing Systems, 2022.
  10. A. Biedenkapp, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer, “Dynamic algorithm configuration: Foundation of a new meta-algorithmic framework,” in ECAI 2020.   IOS Press, 2020, pp. 427–434.
  11. B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß, “Algorithm selection based on exploratory landscape analysis and cost-sensitive learning,” in Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, 2012, pp. 313–320.
  12. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  13. A. W. Mohamed, A. A. Hadi, A. K. Mohamed, P. Agrawal, A. Kumar, and P. N. Suganthan, “Problem definitions and evaluation criteria for the cec 2021 on single objective bound constrained numerical optimization,” in Tech. Rep.   Singapore: Nanyang Technological University, November 2020.
  14. W. Gong, Y. Wang, Z. Cai, and L. Wang, “Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 4, pp. 1499–1513, 2018.
  15. Y.-J. Gong, Y.-W. Liu, Y. Lin, W.-N. Chen, and J. Zhang, “Real-time taxi–passenger matching using a differential evolutionary fuzzy controller,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 5, pp. 2712–2725, 2019.
  16. W. Deng, J. Xu, X.-Z. Gao, and H. Zhao, “An enhanced msiqde algorithm with novel multiple strategies for global optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 3, pp. 1578–1587, 2020.
  17. R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren, “Differential evolution algorithm with ensemble of parameters and mutation strategies,” Applied Soft Computing, vol. 11, no. 2, pp. 1679–1696, 2011.
  18. Y. Li, S. Wang, H. Yang, H. Chen, and B. Yang, “Enhancing differential evolution algorithm using leader-adjoint populations,” Information Sciences, vol. 622, pp. 235–268, 2023.
  19. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.
  20. J. Brest, M. S. Maučec, and B. Bošković, “Self-adaptive differential evolution algorithm with population size reduction for single objective bound-constrained optimization: Algorithm j21,” in 2021 IEEE Congress on Evolutionary Computation (CEC), 2021, pp. 817–824.
  21. R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” in 2013 IEEE Congress on Evolutionary Computation, 2013, pp. 71–78.
  22. V. Stanovov, S. Akhmedova, and E. Semenkin, “Nl-shade-rsp algorithm with adaptive archive and selective pressure for cec 2021 numerical optimization,” in 2021 IEEE Congress on Evolutionary Computation (CEC), 2021, pp. 809–816.
  23. ——, “Nl-shade-lbc algorithm with linear parameter adaptation bias change for cec 2022 numerical optimization,” in 2022 IEEE Congress on Evolutionary Computation (CEC).   IEEE, 2022, pp. 01–08.
  24. S. Biswas, D. Saha, S. De, A. D. Cobb, S. Das, and B. A. Jalaian, “Improving differential evolution through bayesian hyperparameter optimization,” in 2021 IEEE Congress on Evolutionary Computation (CEC), 2021, pp. 832–840.
  25. G. Wu, X. Shen, H. Li, H. Chen, A. Lin, and P. N. Suganthan, “Ensemble of differential evolution variants,” Information Sciences, vol. 423, pp. 172–186, 2018.
  26. J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution with optional external archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.
  27. G. Li, Q. Lin, L. Cui, Z. Du, Z. Liang, J. Chen, N. Lu, and Z. Ming, “A novel hybrid differential evolution algorithm with modified code and jade,” Applied Soft Computing, vol. 47, pp. 577–599, 2016.
  28. S. Li, W. Gong, L. Wang, and Q. Gu, “Evolutionary multitasking via reinforcement learning,” IEEE Transactions on Emerging Topics in Computational Intelligence, 2023.
  29. Z. Liao, W. Gong, and S. Li, “Two-stage reinforcement learning-based differential evolution for solving nonlinear equations,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023.
  30. Q. Yang, S.-C. Chu, J.-S. Pan, J.-H. Chou, and J. Watada, “Dynamic multi-strategy integrated differential evolution algorithm based on reinforcement learning for optimization problems,” Complex & Intelligent Systems, pp. 1–33, 2023.
  31. Z. Tan and K. Li, “Differential evolution with mixed mutation strategy based on deep reinforcement learning,” Applied Soft Computing, vol. 111, p. 107678, 2021.
  32. M. Sharma, A. Komninos, M. López-Ibáñez, and D. Kazakov, “Deep reinforcement learning based parameter control in differential evolution,” in Proceedings of the Genetic and Evolutionary Computation Conference.   Association for Computing Machinery, 2019, pp. 709–717.
  33. C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. -, pp. 279–292, 1992.
  34. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
  35. H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.
  36. J. Sun, X. Liu, T. Bäck, and Z. Xu, “Learning adaptive differential evolution algorithm from optimization experiences by policy gradient,” IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp. 666–680, 2021.
  37. A. Graves and A. Graves, “Long short-term memory,” Supervised Sequence Labelling with Recurrent Neural Networks, pp. 37–45, 2012.
  38. Z. Tan, Y. Tang, K. Li, H. Huang, and S. Luo, “Differential evolution with hybrid parameters and mutation strategies based on reinforcement learning,” Swarm and Evolutionary Computation, vol. 75, no. -, p. 101194, 2022.
  39. M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue, “A study of fitness distance correlation as a difficulty measure in genetic programming,” Evolutionary Computation, vol. 13, no. 2, pp. 213–239, 2005.
  40. M. Lunacek and D. Whitley, “The dispersion metric and the cma evolution strategy,” in Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, 2006, pp. 477–484.
  41. L. Vanneschi, M. Clergue, P. Collard, M. Tomassini, and S. Vérel, “Fitness clouds and problem hardness in genetic programming,” in Genetic and Evolutionary Computation–GECCO 2004: Genetic and Evolutionary Computation Conference, Seattle, WA, USA, June 26-30, 2004. Proceedings, Part II, 2004, pp. 690–701.
  42. L. Vanneschi, M. Tomassini, P. Collard, S. Vérel, Y. Pirola, and G. Mauri, “A comprehensive view of fitness landscapes with neutrality and fitness clouds,” in Genetic Programming: 10th European Conference, EuroGP 2007, Valencia, Spain, April 11-13, 2007. Proceedings 10, 2007, pp. 241–250.
  43. M. Wang, B. Li, G. Zhang, and X. Yao, “Population evolvability: Dynamic fitness landscape analysis for population-based metaheuristic algorithms,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 4, pp. 550–563, 2017.
  44. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym,” 2016.
  45. D. Hilbert, E. Schmidt, and E. Schmidt, “Zur theorie der linearen und nichtlinearen integralgleichungen: I. teil: Entwicklung willkürlicher funktionen nach systemen vorgeschriebener,” Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten, pp. 190–233, 1989.
Citations (7)

Summary

We haven't generated a summary for this paper yet.