Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential Expressivity of ReLU$^k$ Neural Networks on Gevrey Classes with Point Singularities (2403.02035v2)

Published 4 Mar 2024 in math.NA, cs.LG, and cs.NA

Abstract: We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains $\mathrm{D} \subset \mathbb{R}d$, $d=2,3$. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in $\mathrm{D}$, comprising the countably-normed spaces of I.M. Babu\v{s}ka and B.Q. Guo. As intermediate result, we prove that continuous, piecewise polynomial high order (``$p$-version'') finite elements with elementwise polynomial degree $p\in\mathbb{N}$ on arbitrary, regular, simplicial partitions of polyhedral domains $\mathrm{D} \subset \mathbb{R}d$, $d\geq 2$ can be exactly emulated by neural networks combining ReLU and ReLU$2$ activations. On shape-regular, simplicial partitions of polytopal domains $\mathrm{D}$, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the finite element space, in particular for the $hp$-Finite Element Method of I.M. Babu\v{s}ka and B.Q. Guo.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Understanding deep neural networks with rectified linear units. In International Conference on Learning Representations, 2018. arXiv: 1611.01491.
  2. I. Babuška and B. Q. Guo. The hℎhitalic_h-p𝑝pitalic_p version of the finite element method for domains with curved boundaries. SIAM J. Numer. Anal., 25(4):837–861, 1988.
  3. I. Babuška and B. Q. Guo. Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal., 19(1):172–203, 1988.
  4. I. Babuška and B. Q. Guo. Regularity of the solution of elliptic problems with piecewise analytic data. II. The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions. SIAM J. Math. Anal., 20(4):763–781, 1989.
  5. I. Babuška and B. Q. Guo. Approximation properties of the hℎhitalic_h-p𝑝pitalic_p version of the finite element method. Comput. Methods Appl. Mech. Engrg., 133(3-4):319–346, 1996.
  6. An h-adaptive finite element solver for the calculations of the electronic structures. Journal of Computational Physics, 231(14):4967–4979, 2012.
  7. Régularité Gevrey pour le problème de Dirichlet dans des domaines à singularités coniques. Comm. Partial Differential Equations, 10(4):391–431, 1985.
  8. Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput., 45(1-3):90–117, 2010.
  9. J.-Y. Chemin. Perfect incompressible fluids, volume 14 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie.
  10. Q. Chen and I. Babuška. The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Comput. Methods Appl. Mech. Engrg., 137(1):89–94, 1996.
  11. Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal., 33(3):627–649, 1999.
  12. Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci., 22(8):1250015, 63, 2012.
  13. M. Dubiner. Spectral methods on triangles and other domains. J. Sci. Comput., 6(4):345–390, 1991.
  14. DNN expression rate analysis of high-dimensional PDEs: Application to option pricing. Constructive Approximation, 55(1):3–71, 2022.
  15. A. Ern and J.-L. Guermond. Finite elements I—Approximation and interpolation, volume 72 of Texts in Applied Mathematics. Springer, Cham, 2021.
  16. M. Feischl and C. Schwab. Exponential convergence in H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT of h⁢pℎ𝑝hpitalic_h italic_p-FEM for Gevrey regularity with isotropic singularities. Numer. Math., 144(2):323–346, 2020.
  17. Analytic structure of solutions to multiconfiguration equations. J. Phys. A, 42(31):315208, 11, 2009.
  18. B. Guo. The h-p version of finite element method in two dimensions – Mathematical theory and computational experience. ProQuest LLC, Ann Arbor, MI, 1985. Thesis (Ph.D.)–University of Maryland, College Park.
  19. B. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth domains in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A, 127(1):77–126, 1997.
  20. B. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth domains in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A, 127(3):517–545, 1997.
  21. B. Guo and C. Schwab. Analytic regularity of Stokes flow on polygonal domains in countably weighted Sobolev spaces. J. Comput. Appl. Math., 190(1-2):487–519, 2006.
  22. B. Q. Guo and I. Babuška. On the regularity of elasticity problems with piecewise analytic data. Adv. in Appl. Math., 14(3):307–347, 1993.
  23. ReLU deep neural networks and linear finite elements. J. Comp. Math., 38, 2020.
  24. J. He and J. Xu. Deep neural networks and finite elements of any order on arbitrary dimensions, 2024. ArXiv:2312.14276.
  25. Analytic regularity for the Navier-Stokes equations in polygons with mixed boundary conditions. Technical Report 2021-29, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2021.
  26. Constructive Deep ReLU Neural Network Approximation. Journal of Scientific Computing, 90(2):75, 2022.
  27. J. S. Hesthaven. From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal., 35(2):655–676, 1998.
  28. B. Holm and T. P. Wihler. Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up. Numer. Math., 138(3):767–799, 2018.
  29. Better approximations of high dimensional smooth functions by deep neural networks with rectified power units. Communications in Computational Physics, 27(2):379–411, 2019.
  30. De Rham compatible deep neural network FEM. Neural Networks, 165:721–739, 2023.
  31. Y. Maday and C. Marcati. Regularity and h⁢pℎ𝑝hpitalic_h italic_p discontinuous Galerkin finite element approximation of linear elliptic eigenvalue problems with singular potentials. Math. Models Methods Appl. Sci., 29(8):1585–1617, 2019.
  32. Exponential ReLU neural network approximation rates for point and edge singularities. Found. Comput. Math., 23(3):1043–1127, 2023.
  33. C. Marcati and C. Schwab. Analytic regularity for the incompressible Navier-Stokes equations in polygons. SIAM J. Math. Anal., 52(3):2945–2968, 2020.
  34. J. M. Melenk. h⁢pℎ𝑝hpitalic_h italic_p-Finite Element Methods for Singular Perturbations, volume 1796 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002.
  35. J. M. Melenk and C. Schwab. h⁢pℎ𝑝hpitalic_h italic_p FEM for reaction-diffusion equations. I. Robust exponential convergence. SIAM J. Numer. Anal., 35(4):1520–1557, 1998.
  36. J. A. A. Opschoor. Constructive deep neural network approximations of weighted analytic solutions to partial differential equations in polygons. PhD thesis, ETH Zürich, 2023. Diss. ETH No. 29278.
  37. Deep ReLU networks and high-order finite element methods. Analysis and Applications, 18(05):715–770, 2020.
  38. J. A. A. Opschoor and C. Schwab. Deep ReLU networks and high-order finite element methods II: Chebyshev emulation, 2023. ArXiv: 2310.07261.
  39. Neural networks for singular perturbations, 2024. ArXiv:2401.06656.
  40. Exponential ReLU DNN expression of holomorphic maps in high dimension. Constructive Approximation, 55(1):537–582, 2022.
  41. P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw., 108:296 – 330, 2018.
  42. Blow-Up in Quasilinear Parabolic Equations. De Gruyter, Berlin, New York, 1995.
  43. C. Schwab. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics.
  44. B. Szabó and I. Babuška. Finite element analysis. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1991.
  45. D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Netw., 94:103–114, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.