Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Active-Passive RIS Transmitter Enabled Energy-Efficient Multi-User Communications (2403.01956v1)

Published 4 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: A novel hybrid active-passive reconfigurable intelligent surface (RIS) transmitter enabled downlink multi-user communication system is investigated. Specifically, RISs are exploited to serve as transmitter antennas, where each element can flexibly switch between active and passive modes to deliver information to multiple users. The system energy efficiency (EE) maximization problem is formulated by jointly optimizing the RIS element scheduling and beamforming coefficients, as well as the power allocation coefficients, subject to the user's individual rate requirement and the maximum RIS amplification power constraint. Using the Dinkelbach relaxation, the original mixed-integer nonlinear programming problem is transformed into a nonfractional optimization problem with a two-layer structure, which is solved by the alternating optimization approach. In particular, an exhaustive search method is proposed to determine the optimal operating mode for each RIS element. Then, the RIS beamforming and power allocation coefficients are properly designed in an alternating manner. To overcome the potentially high complexity caused by exhaustive searching, we further develop a joint RIS element mode and beamforming optimization scheme by exploiting the Big-M formulation technique. Numerical results validate that: 1) The proposed hybrid RIS scheme yields higher EE than the baseline multi-antenna schemes employing fully active/passive RIS or conventional radio frequency chains; 2) Both proposed algorithms are effective in improving the system performance, especially the latter can achieve precise design of RIS elements with low complexity; and 3) For a fixed-size hybrid RIS, maximum EE can be reaped by setting only a minority of elements to operate in the active mode.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. A. Huang, X. Mu, L. Guo, and G. Zhu, “Energy-efficient design for hybrid RIS transmitter enabled multi-user communications,” in 2024 IEEE 25th Wireless Communications and Networking Conference (WCNC).   IEEE, 2024, to be published.
  2. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A survey on enabling technologies, protocols, and applications,” IEEE Commun. Surv. Tut., vol. 17, no. 4, pp. 2347–2376, Fourthquarter 2015.
  3. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE network, vol. 34, no. 3, pp. 134–142, May/June 2020.
  4. S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges,” Proc. IEEE, vol. 102, no. 3, pp. 366–385, Mar. 2014.
  5. H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “An overview of signal processing techniques for terahertz communications,” Proc. IEEE, vol. 109, no. 10, pp. 1628–1665, Oct. 2021.
  6. C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, P. Popovski, and M. Debbah, “Seven defining features of terahertz (THz) wireless systems: A fellowship of communication and sensing,” IEEE Commun. Surv. Tut., vol. 24, no. 2, pp. 967–993, Secondquarter 2022.
  7. J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.
  8. Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting surface-aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–3351, May 2021.
  9. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. De Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Nov. 2020.
  10. W. Tang, J. Y. Dai, M. Z. Chen, K.-K. Wong, X. Li, X. Zhao, S. Jin, Q. Cheng, and T. J. Cui, “MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2683–2699, Nov. 2020.
  11. Z. Li, W. Chen, and H. Cao, “Beamforming design and power allocation for transmissive RMS-based transmitter architectures,” IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 53–57, Jan. 2022.
  12. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
  13. X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Capacity and optimal resource allocation for IRS-assisted multi-user communication systems,” IEEE Trans. Commun., vol. 69, no. 6, pp. 3771–3786, Jun. 2021.
  14. X. Gan, C. Zhong, C. Huang, and Z. Zhang, “RIS-assisted multi-user MISO communications exploiting statistical CSI,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6781–6792, Oct. 2021.
  15. J. Xu, C. Yuen, C. Huang, N. Ul Hassan, G. C. Alexandropoulos, M. Di Renzo, and M. Debbah, “Reconfiguring wireless environments via intelligent surfaces for 6G: Reflection, modulation, and security,” Sci. China Inf. Sci., vol. 66, no. 3, 2023.
  16. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE J. Sel. Topics Signal Process., vol. 17, no. 1, pp. 9–39, Jan. 2023.
  17. Y. Zhao, W. Xu, X. You, N. Wang, and H. Sun, “Cooperative reflection and synchronization design for distributed multiple-RIS communications,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 980–994, Aug. 2022.
  18. C. Huang, Z. Yang, G. C. Alexandropoulos, K. Xiong, L. Wei, C. Yuen, Z. Zhang, and M. Debbah, “Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design,” IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1663–1677, Jun. 2021.
  19. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?” IEEE Trans. Commun., vol. 71, no. 3, pp. 1707–1725, Mar. 2023.
  20. H. Xie and D. Li, “To reflect or not to reflect: On-off control and number configuration for reflecting elements in RIS-aided wireless systems,” IEEE Trans. Commun., vol. 71, no. 12, pp. 7409–7424, Dec. 2023.
  21. N. T. Nguyen, V.-D. Nguyen, Q. Wu, A. Tölli, S. Chatzinotas, and M. Juntti, “Hybrid active-passive reconfigurable intelligent surface-assisted multi-user MISO systems,” in 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC).   IEEE, 2022, pp. 1–5.
  22. Z. Kang, C. You, and R. Zhang, “Active-passive IRS aided wireless communication: New hybrid architecture and elements allocation optimization,” IEEE Trans. Wireless Commun., 2023.
  23. X. Bai, F. Kong, Y. Sun, G. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin et al., “High-efficiency transmissive programmable metasurface for multimode OAM generation,” Advanced Optical Materials, vol. 8, no. 17, Jun. 2020.
  24. N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun., vol. 28, no. 2, pp. 106–113, Apr. 2021.
  25. Z. Li, W. Chen, Z. Liu, H. Tang, and J. Lu, “Joint communication and computation design in transmissive RMS transceiver enabled multi-tier computing networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 2, pp. 334–348, Feb. 2023.
  26. Z. Li, W. Chen, Z. Zhang, Q. Wu, H. Cao, and J. Li, “Robust sum-rate maximization in transmissive RMS transceiver-enabled SWIPT networks,” IEEE Internet Things J., vol. 10, no. 8, pp. 7259–7271, Apr. 2023.
  27. Z. Liu, W. Chen, Z. Li, J. Yuan, Q. Wu, and K. Wang, “Transmissive reconfigurable intelligent surface transmitter empowered cognitive RSMA networks,” IEEE Commun. Lett., vol. 27, no. 7, pp. 1829–1833, Jul. 2023.
  28. Z. Wang, L. Liu, and S. Cui, “Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6607–6620, Oct. 2020.
  29. L. Wei, C. Huang, G. C. Alexandropoulos, C. Yuen, Z. Zhang, and M. Debbah, “Channel estimation for RIS-empowered multi-user MISO wireless communications,” IEEE Trans. Commun., vol. 69, no. 6, pp. 4144–4157, Jun. 2021.
  30. Y. Liu, Z. Wang, J. Xu, C. Ouyang, X. Mu, and R. Schober, “Near-field communications: A tutorial review,” IEEE Open J. Commun. Soc., vol. 4, pp. 1999–2049, Aug. 2023.
  31. A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Sept. 2022.
  32. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Joint deployment and multiple access design for intelligent reflecting surface assisted networks,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6648–6664, Oct. 2021.
  33. F. Fang, B. Wu, S. Fu, Z. Ding, and X. Wang, “Energy-efficient design of STAR-RIS aided MIMO-NOMA networks,” IEEE Trans. Commun., vol. 71, no. 1, pp. 498–511, Jan. 2023.
  34. R. Long, Y.-C. Liang, Y. Pei, and E. G. Larsson, “Active reconfigurable intelligent surface-aided wireless communications,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4962–4975, Aug. 2021.
  35. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3083–3098, May 2022.
  36. Y. Cai, Z. Wei, R. Li, D. W. K. Ng, and J. Yuan, “Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4536–4553, Jul. 2020.
  37. Q. Wu, X. Zhou, W. Chen, J. Li, and X. Zhang, “IRS-aided WPCNs: A new optimization framework for dynamic IRS beamforming,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 4725–4739, Jul. 2022.
  38. R. Zi, X. Ge, J. Thompson, C.-X. Wang, H. Wang, and T. Han, “Energy efficiency optimization of 5G radio frequency chain systems,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 758–771, Apr. 2016.
  39. J. Liu, K. Xiong, Y. Lu, D. W. K. Ng, Z. Zhong, and Z. Han, “Energy efficiency in secure IRS-aided SWIPT,” IEEE Wireless Commun. Lett., vol. 9, no. 11, pp. 1884–1888, Nov. 2020.
Citations (4)

Summary

We haven't generated a summary for this paper yet.