Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CET2: Modelling Topic Transitions for Coherent and Engaging Knowledge-Grounded Conversations (2403.01848v1)

Published 4 Mar 2024 in cs.CL

Abstract: Knowledge-grounded dialogue systems aim to generate coherent and engaging responses based on the dialogue contexts and selected external knowledge. Previous knowledge selection methods tend to rely too heavily on the dialogue contexts or over-emphasize the new information in the selected knowledge, resulting in the selection of repetitious or incongruous knowledge and further generating repetitive or incoherent responses, as the generation of the response depends on the chosen knowledge. To address these shortcomings, we introduce a Coherent and Engaging Topic Transition (CET2) framework to model topic transitions for selecting knowledge that is coherent to the context of the conversations while providing adequate knowledge diversity for topic development. Our CET2 framework considers multiple factors for knowledge selection, including valid transition logic from dialogue contexts to the following topics and systematic comparisons between available knowledge candidates. Extensive experiments on two public benchmarks demonstrate the superiority and the better generalization ability of CET2 on knowledge selection. This is due to our well-designed transition features and comparative knowledge selection strategy, which are more transferable to conversations about unseen topics. Analysis of fine-grained knowledge selection accuracy also shows that CET2 can better balance topic entailment (contextual coherence) and development (knowledge diversity) in dialogue than existing approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. M. Ghazvininejad, C. Brockett, M.-W. Chang, B. Dolan, J. Gao, W.-t. Yih, and M. Galley, “A knowledge-grounded neural conversation model,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.
  2. L. Zhou, J. Gao, D. Li, and H.-Y. Shum, “The design and implementation of xiaoice, an empathetic social chatbot,” Computational Linguistics, vol. 46, no. 1, pp. 53–93, 2020.
  3. E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston, “Wizard of wikipedia: Knowledge-powered conversational agents,” in International Conference on Learning Representations, 2019.
  4. R. Lian, M. Xie, F. Wang, J. Peng, and H. Wu, “Learning to select knowledge for response generation in dialog systems,” in IJCAI International Joint Conference on Artificial Intelligence, 2019, p. 5081.
  5. B. Kim, J. Ahn, and G. Kim, “Sequential latent knowledge selection for knowledge-grounded dialogue,” in International Conference on Learning Representations, 2020.
  6. W. Zheng, N. Milic-Frayling, and K. Zhou, “Approximation of response knowledge retrieval in knowledge-grounded dialogue generation,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, 2020, pp. 3581–3591.
  7. X. Zhao, W. Wu, C. Xu, C. Tao, D. Zhao, and R. Yan, “Knowledge-grounded dialogue generation with pre-trained language models,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 3377–3390.
  8. C. Zheng, Y. Cao, D. Jiang, and M. Huang, “Difference-aware knowledge selection for knowledge-grounded conversation generation,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, 2020, pp. 115–125.
  9. S. Moon, P. Shah, A. Kumar, and R. Subba, “OpenDialKG: Explainable conversational reasoning with attention-based walks over knowledge graphs,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.   Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 845–854. [Online]. Available: https://aclanthology.org/P19-1081
  10. J. Xu, H. Wang, Z.-Y. Niu, H. Wu, W. Che, and T. Liu, “Conversational graph grounded policy learning for open-domain conversation generation,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.   Online: Association for Computational Linguistics, Jul. 2020, pp. 1835–1845. [Online]. Available: https://aclanthology.org/2020.acl-main.166
  11. S. Li, M. Namazifar, D. Jin, M. Bansal, H. Ji, Y. Liu, and D. Hakkani-Tur, “Enhancing knowledge selection for grounded dialogues via document semantic graphs,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.   Seattle, United States: Association for Computational Linguistics, Jul. 2022, pp. 2810–2823. [Online]. Available: https://aclanthology.org/2022.naacl-main.202
  12. L. Xu, Q. Zhou, J. Fu, M.-Y. Kan, and S.-K. Ng, “CorefDiffs: Co-referential and differential knowledge flow in document grounded conversations,” in Proceedings of the 29th International Conference on Computational Linguistics.   Gyeongju, Republic of Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 471–484. [Online]. Available: https://aclanthology.org/2022.coling-1.38
  13. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, 2017, pp. 5998–6008.
  14. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised multitask learners,” 2019.
  15. X. Lin, W. Jian, J. He, T. Wang, and W. Chu, “Generating informative conversational response using recurrent knowledge-interaction and knowledge-copy,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020, pp. 41–52.
  16. H. Rashkin, D. Reitter, G. S. Tomar, and D. Das, “Increasing faithfulness in knowledge-grounded dialogue with controllable features,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers).   Online: Association for Computational Linguistics, Aug. 2021, pp. 704–718. [Online]. Available: https://aclanthology.org/2021.acl-long.58
  17. C. Meng, P. Ren, Z. Chen, W. Sun, Z. Ren, Z. Tu, and M. d. Rijke, “Dukenet: A dual knowledge interaction network for knowledge-grounded conversation,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 1151–1160.
  18. H. Zhan, H. Zhang, H. Chen, Z. Ding, Y. Bao, and Y. Lan, “Augmenting knowledge-grounded conversations with sequential knowledge transition,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021, pp. 5621–5630.
  19. J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao, “Deep reinforcement learning for dialogue generation,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.   Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 1192–1202. [Online]. Available: https://aclanthology.org/D16-1127
  20. X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, “End-to-end task-completion neural dialogue systems,” in Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers).   Taipei, Taiwan: Asian Federation of Natural Language Processing, Nov. 2017, pp. 733–743. [Online]. Available: https://aclanthology.org/I17-1074
  21. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  22. Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen, “Enhanced lstm for natural language inference,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1657–1668.
  23. O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” Advances in Neural Information Processing Systems, vol. 28, pp. 2692–2700, 2015.
  24. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in International Conference on Learning Representations, 2018.
  25. E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.
  26. N. Moghe, S. Arora, S. Banerjee, and M. M. Khapra, “Towards exploiting background knowledge for building conversation systems,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 2322–2332.
  27. Z. Ye, L. Lu, L. Huang, L. Lin, and X. Liang, “Towards quantifiable dialogue coherence evaluation,” in Proceedings of the 2021 Conference on Association for Computational Linguistics (ACL), 2021.
  28. X. Chen, F. Meng, P. Li, F. Chen, S. Xu, B. Xu, and J. Zhou, “Bridging the gap between prior and posterior knowledge selection for knowledge-grounded dialogue generation,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020, pp. 3426–3437.
  29. H. Zhan, L. Shen, H. Chen, and H. Zhang, “Colv: A collaborative latent variable model for knowledge-grounded dialogue generation,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 2250–2261.
  30. Z. Wu, B.-R. Lu, H. Hajishirzi, and M. Ostendorf, “Dialki: Knowledge identification in conversational systems through dialogue-document contextualization,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021.
  31. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, pp. 8026–8037, 2019.
  32. T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers: State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations.   Online: Association for Computational Linguistics, Oct. 2020, pp. 38–45. [Online]. Available: https://aclanthology.org/2020.emnlp-demos.6
  33. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2015.
  34. Z. Ye, L. Lu, L. Huang, L. Lin, and X. Liang, “Towards quantifiable dialogue coherence evaluation,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers).   Online: Association for Computational Linguistics, Aug. 2021, pp. 2718–2729. [Online]. Available: https://aclanthology.org/2021.acl-long.211
  35. J. L. Fleiss, “Measuring nominal scale agreement among many raters.” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.
  36. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).   Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online]. Available: https://aclanthology.org/N19-1423
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lin Xu (46 papers)
  2. Qixian Zhou (4 papers)
  3. Jinlan Fu (36 papers)
  4. See-Kiong Ng (103 papers)