Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention Guidance Mechanism for Handwritten Mathematical Expression Recognition (2403.01756v2)

Published 4 Mar 2024 in cs.CV

Abstract: Handwritten mathematical expression recognition (HMER) is challenging in image-to-text tasks due to the complex layouts of mathematical expressions and suffers from problems including over-parsing and under-parsing. To solve these, previous HMER methods improve the attention mechanism by utilizing historical alignment information. However, this approach has limitations in addressing under-parsing since it cannot correct the erroneous attention on image areas that should be parsed at subsequent decoding steps. This faulty attention causes the attention module to incorporate future context into the current decoding step, thereby confusing the alignment process. To address this issue, we propose an attention guidance mechanism to explicitly suppress attention weights in irrelevant areas and enhance the appropriate ones, thereby inhibiting access to information outside the intended context. Depending on the type of attention guidance, we devise two complementary approaches to refine attention weights: self-guidance that coordinates attention of multiple heads and neighbor-guidance that integrates attention from adjacent time steps. Experiments show that our method outperforms existing state-of-the-art methods, achieving expression recognition rates of 60.75% / 61.81% / 63.30% on the CROHME 2014/ 2016/ 2019 datasets.

Summary

We haven't generated a summary for this paper yet.