Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

ASPIRe: An Informative Trajectory Planner with Mutual Information Approximation for Target Search and Tracking (2403.01674v1)

Published 4 Mar 2024 in cs.RO

Abstract: This paper proposes an informative trajectory planning approach, namely, \textit{adaptive particle filter tree with sigma point-based mutual information reward approximation} (ASPIRe), for mobile target search and tracking (SAT) in cluttered environments with limited sensing field of view. We develop a novel sigma point-based approximation to accurately estimate mutual information (MI) for general, non-Gaussian distributions utilizing particle representation of the belief state, while simultaneously maintaining high computational efficiency. Building upon the MI approximation, we develop the Adaptive Particle Filter Tree (APFT) approach with MI as the reward, which features belief state tree nodes for informative trajectory planning in continuous state and measurement spaces. An adaptive criterion is proposed in APFT to adjust the planning horizon based on the expected information gain. Simulations and physical experiments demonstrate that ASPIRe achieves real-time computation and outperforms benchmark methods in terms of both search efficiency and estimation accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. E. Lozano, U. Ruiz, I. Becerra, and R. Murrieta-Cid, “Surveillance and collision-free tracking of an aggressive evader with an actuated sensor pursuer,” IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 3, pp. 6854–6861, 2022.
  2. M. Aggravi, A. A. S. Elsherif, P. R. Giordano, and C. Pacchierotti, “Haptic-enabled decentralized control of a heterogeneous human-robot team for search and rescue in partially-known environments,” IEEE Robotics and Automation Letters (RA-L), vol. 6, no. 3, pp. 4843–4850, 2021.
  3. F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learning robot for search and rescue applications: Exploration in unknown cluttered environments,” IEEE Robotics and Automation Letters (RA-L), vol. 4, no. 2, pp. 610–617, 2019.
  4. B. Charrow, V. Kumar, and N. Michael, “Approximate representations for multi-robot control policies that maximize mutual information,” Autonomous Robots, vol. 37, pp. 383–400, 2014.
  5. G. M. Hoffmann and C. J. Tomlin, “Mobile sensor network control using mutual information methods and particle filters,” IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 32–47, 2009.
  6. T. Furukawa, F. Bourgault, B. Lavis, and H. F. Durrant-Whyte, “Recursive bayesian search-and-tracking using coordinated uavs for lost targets,” in Proceedings of International Conference on Robotics and Automation (ICRA), IEEE, 2006.
  7. T. H. Chung, J. W. Burdick, and R. M. Murray, “A decentralized motion coordination strategy for dynamic target tracking,” in Proceedings of International Conference on Robotics and Automation (ICRA), IEEE, 2006.
  8. J. Tisdale, A. Ryan, Z. Kim, D. Tornqvist, and J. K. Hedrick, “A multiple uav system for vision-based search and localization,” in American Control Conference (ACC), IEEE, 2008.
  9. A. Ryan and J. K. Hedrick, “Particle filter based information-theoretic active sensing,” Robotics and Autonomous Systems, vol. 58, no. 5, pp. 574–584, 2010.
  10. G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-robot search for a moving target,” International Journal of Robotics Research (IJRR), vol. 28, no. 2, pp. 201–219, 2009.
  11. F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte, “Optimal search for a lost target in a bayesian world,” Field and Service Robotics: Recent Advances in Reserch and Applications, pp. 209–222, 2006.
  12. J. Tisdale, Z. Kim, and J. K. Hedrick, “Autonomous uav path planning and estimation,” IEEE Robotics & Automation Magazine, vol. 16, no. 2, pp. 35–42, 2009.
  13. A. Asgharivaskasi, S. Koga, and N. Atanasov, “Active mapping via gradient ascent optimization of shannon mutual information over continuous se (3) trajectories,” in Proceedings of International Conference on Intelligent Robots and Systems (IROS), IEEE, 2022.
  14. P. Yang, Y. Liu, S. Koga, A. Asgharivaskasi, and N. Atanasov, “Learning continuous control policies for information-theoretic active perception,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 2098–2104, IEEE, 2023.
  15. B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “Distributed robotic sensor networks: An information-theoretic approach,” International Journal of Robotics Research (IJRR), vol. 31, no. 10, pp. 1134–1154, 2012.
  16. M. Ghaffari Jadidi, J. Valls Miro, and G. Dissanayake, “Sampling-based incremental information gathering with applications to robotic exploration and environmental monitoring,” International Journal of Robotics Research (IJRR), vol. 38, no. 6, pp. 658–685, 2019.
  17. C. Liu and J. K. Hedrick, “Model predictive control-based target search and tracking using autonomous mobile robot with limited sensing domain,” in American Control Conference (ACC), IEEE, 2017.
  18. F. Vanegas, D. Campbell, M. Eich, and F. Gonzalez, “Uav based target finding and tracking in gps-denied and cluttered environments,” in Proceedings of International Conference on Intelligent Robots and Systems (IROS), IEEE, 2016.
  19. A. Goldhoorn, A. Garrell, R. Alquézar, and A. Sanfeliu, “Searching and tracking people with cooperative mobile robots,” Autonomous Robots, vol. 42, no. 4, pp. 739–759, 2018.
  20. A. Wandzel, Y. Oh, M. Fishman, N. Kumar, L. L. Wong, and S. Tellex, “Multi-object search using object-oriented pomdps,” in Proceedings of International Conference on Robotics and Automation (ICRA), IEEE, 2019.
  21. Z. Sunberg and M. Kochenderfer, “Online algorithms for pomdps with continuous state, action, and observation spaces,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 28, pp. 259–263, 2018.
  22. J. Fischer and Ö. S. Tas, “Information particle filter tree: An online algorithm for pomdps with belief-based rewards on continuous domains,” in International Conference on Machine Learning, PMLR, 2020.
  23. H. Gao, P. Wu, Y. Su, K. Zhou, J. Ma, H. Liu, and C. Liu, “Probabilistic visibility-aware trajectory planning for target tracking in cluttered environments,” in American Control Conference (ACC), IEEE, 2024.
  24. MIT Press, 2005.
  25. M. F. Huber, T. Bailey, H. Durrant-Whyte, and U. D. Hanebeck, “On entropy approximation for gaussian mixture random vectors,” in International Conference on Multisensor Fusion and Integration for Intelligent Systems, IEEE, 2008.
  26. R. Van Der Merwe, Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. Oregon Health & Science University, 2004.
  27. L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European conference on machine learning, Springer, 2006.
  28. E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in Proceedings of International Conference on Robotics and Automation (ICRA), IEEE, 2011.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.