Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fisher-KPP-type models of biological invasion: Open source computational tools, key concepts and analysis (2403.01667v6)

Published 4 Mar 2024 in nlin.PS and q-bio.PE

Abstract: This review provides open-access computational tools that support a range of mathematical approaches to analyse three related scalar reaction-diffusion models used to study biological invasion. Starting with the classic Fisher-Kolmogorov (Fisher-KPP) model, we illustrate how computational methods can be used to explore time-dependent partial differential equation (PDE) solutions in parallel with phase plane and regular perturbation techniques to explore invading travelling wave solutions moving with dimensionless speed $c \ge 2$. To overcome the lack of a well-defined sharp front in solutions of the Fisher-KPP model, we also review two alternative modeling approaches. The first is the Porous-Fisher model where the linear diffusion term is replaced with a degenerate nonlinear diffusion term. Using phase plane and regular perturbation methods, we explore the distinction between sharp- and smooth-fronted invading travelling waves that move with dimensionless speed $c \ge 1/\sqrt{2}$. The second alternative approach is to reformulate the Fisher-KPP model as a moving boundary problem on $0 < x < L(t)$, leading to the Fisher-Stefan model with sharp-fronted travelling wave solutions arising from a PDE model with a linear diffusion term. Time-dependent PDE solutions and phase plane methods show that travelling wave solutions of the Fisher-Stefan model can describe both biological invasion $(c > 0)$ and biological recession $(c < 0)$. Open source Julia code to replicate all computational results in this review is available on GitHub; we encourage researchers to use this code directly or to adapt the code as required for more complicated models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Skellam JG. 1951. Random dispersal in theoretical populations. Biometrika. 38, 196–218. (doi:http://doi.org/10.1093/biomet/38.1-2.196).
  2. Kot M. 2003. Elements of Mathematical Ecology. Cambridge University Press, Cambridge.
  3. Edelstein-Keshet L. 2005. Mathematical Models in Biology. SIAM, Philadelphia.
  4. Murray JD. 2002. Mathematical Biology I. An Introduction. New York: Springer.
  5. Fisher RA. 1937. The wave of advance of advantageous genes. Annals of Eugenics. 7, 355–369. (doi:http://doi.org/10.1111/j.1469-1809.1937.tb02153.x).
  6. Canosa J. 1973. On a nonlinear diffusion equation describing population growth. IBM Journal of Research and Development. 17, 307–313. (doi:http://doi.org/10.1147/rd.174.0307).
  7. Aronson DG. 1980. Density-dependent interaction–diffusion systems. In: Dynamics and modelling of reactive systems. Elsevier. 161–-176. (doi:https://doi.org/10.1016/B978-0-12-669550-2.50010-5).
  8. van Saarloos W. 2003. Front propagation into unstable states. Physics Reports. 386(2–6), 29–222. (doi:https://doi.org/10.1016/j.physrep.2003.08.001).
  9. Pattle RE. 1959. Diffusion from an instantaneous point source with a concentration-dependent coefficient. The Quarterly Journal of Mechanics and Applied Mathematics. 12, 407–409. (doi.org/10.1093/qjmam/12.4.407).
  10. Harris S. 2004. Fisher equation with density-dependent diffusion: special solutions. 37, 62–67. Journal of Physics A: Mathematical and General. (doi.org/10.1088/0305-4470/37/24/005).
  11. Vázquez JL. 2006. The porous medium equation: Mathematical theory. Oxford University Press.
  12. Witelski TP. 1995. Merging traveling waves for the porous-Fisher’s equation. Applied Mathematics Letters. 8, 57–62. (doi:https://doi.org/10.1016/0893-9659(95)00047-T).
  13. Witelski TP. 1997. Segregation and mixing in degenerate diffusion in population dynamics. Journal of Mathematical Biology. 35, 695–712. (doi:https://doi.org/10.1007/s002850050072).
  14. Crank J. 1987. Free and Moving Boundary Problems. Oxford University Press, Oxford.
  15. Simpson MJ. 2020. Critical length for the spreading-vanishing dichotomy in higher dimensions. ANZIAM Journal. 62, 3-17. (doi:https://doi.org/10.1017/S1446181120000103).
  16. Kreyszig E. 2006. Advanged engineering mathematics. Wiley.
  17. Morton KW, Mayers DF. 2011. Numerical solution of partial differential equations. Cambridge.
  18. Tsitouras Ch. 2011. Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying assumption. Computers and Mathematics with Applications. 62, 770–775. (https://doi.org/10.1016/j.camwa.2011.06.002).
  19. Larson DA. 1978. Transient bounsa and time-asymptotic behavior of solutions to nonlinear equations of Fisher type. SIAM Journal on Applied Mathematics. 34, 98–104. (https://doi.org/10.1137/0134008).
  20. Murray JD. 1984. Asymptotic analysis. Springer, New York.
  21. Witelski TP. 1994. An asymptotic solution for traveling waves of a nonlinear-diffusion Fisher’s equation. Journal of Mathematical Biology. 33, 1–16. (doi:https://doi.org/10.1007/BF00160171).
  22. Tsoularis A, Wallace J. 2002. Analysis of logistic growth models. Mathematical Biosciences. 179:21–55. (https://doi.org/10.1016/S0025-5564(02)00096-2).
  23. Painter KJ, Sherratt JA. 2003. Modelling the movement of interacting cell populations. Journal of Theoretical Biology. 225:327–339. (https://doi.org/10.1016/S0022-5193(03)00258-3).
  24. Landman KA, Pettet GJ (1998) Modelling the action of proteinase and inhibitor in tissue invasion. Mathematical Biosciences. 154: 23–37. (https://doi.org/10.1016/S0025-5564(98)10038-X).

Summary

We haven't generated a summary for this paper yet.