Fisher-KPP-type models of biological invasion: Open source computational tools, key concepts and analysis (2403.01667v6)
Abstract: This review provides open-access computational tools that support a range of mathematical approaches to analyse three related scalar reaction-diffusion models used to study biological invasion. Starting with the classic Fisher-Kolmogorov (Fisher-KPP) model, we illustrate how computational methods can be used to explore time-dependent partial differential equation (PDE) solutions in parallel with phase plane and regular perturbation techniques to explore invading travelling wave solutions moving with dimensionless speed $c \ge 2$. To overcome the lack of a well-defined sharp front in solutions of the Fisher-KPP model, we also review two alternative modeling approaches. The first is the Porous-Fisher model where the linear diffusion term is replaced with a degenerate nonlinear diffusion term. Using phase plane and regular perturbation methods, we explore the distinction between sharp- and smooth-fronted invading travelling waves that move with dimensionless speed $c \ge 1/\sqrt{2}$. The second alternative approach is to reformulate the Fisher-KPP model as a moving boundary problem on $0 < x < L(t)$, leading to the Fisher-Stefan model with sharp-fronted travelling wave solutions arising from a PDE model with a linear diffusion term. Time-dependent PDE solutions and phase plane methods show that travelling wave solutions of the Fisher-Stefan model can describe both biological invasion $(c > 0)$ and biological recession $(c < 0)$. Open source Julia code to replicate all computational results in this review is available on GitHub; we encourage researchers to use this code directly or to adapt the code as required for more complicated models.
- Skellam JG. 1951. Random dispersal in theoretical populations. Biometrika. 38, 196–218. (doi:http://doi.org/10.1093/biomet/38.1-2.196).
- Kot M. 2003. Elements of Mathematical Ecology. Cambridge University Press, Cambridge.
- Edelstein-Keshet L. 2005. Mathematical Models in Biology. SIAM, Philadelphia.
- Murray JD. 2002. Mathematical Biology I. An Introduction. New York: Springer.
- Fisher RA. 1937. The wave of advance of advantageous genes. Annals of Eugenics. 7, 355–369. (doi:http://doi.org/10.1111/j.1469-1809.1937.tb02153.x).
- Canosa J. 1973. On a nonlinear diffusion equation describing population growth. IBM Journal of Research and Development. 17, 307–313. (doi:http://doi.org/10.1147/rd.174.0307).
- Aronson DG. 1980. Density-dependent interaction–diffusion systems. In: Dynamics and modelling of reactive systems. Elsevier. 161–-176. (doi:https://doi.org/10.1016/B978-0-12-669550-2.50010-5).
- van Saarloos W. 2003. Front propagation into unstable states. Physics Reports. 386(2–6), 29–222. (doi:https://doi.org/10.1016/j.physrep.2003.08.001).
- Pattle RE. 1959. Diffusion from an instantaneous point source with a concentration-dependent coefficient. The Quarterly Journal of Mechanics and Applied Mathematics. 12, 407–409. (doi.org/10.1093/qjmam/12.4.407).
- Harris S. 2004. Fisher equation with density-dependent diffusion: special solutions. 37, 62–67. Journal of Physics A: Mathematical and General. (doi.org/10.1088/0305-4470/37/24/005).
- Vázquez JL. 2006. The porous medium equation: Mathematical theory. Oxford University Press.
- Witelski TP. 1995. Merging traveling waves for the porous-Fisher’s equation. Applied Mathematics Letters. 8, 57–62. (doi:https://doi.org/10.1016/0893-9659(95)00047-T).
- Witelski TP. 1997. Segregation and mixing in degenerate diffusion in population dynamics. Journal of Mathematical Biology. 35, 695–712. (doi:https://doi.org/10.1007/s002850050072).
- Crank J. 1987. Free and Moving Boundary Problems. Oxford University Press, Oxford.
- Simpson MJ. 2020. Critical length for the spreading-vanishing dichotomy in higher dimensions. ANZIAM Journal. 62, 3-17. (doi:https://doi.org/10.1017/S1446181120000103).
- Kreyszig E. 2006. Advanged engineering mathematics. Wiley.
- Morton KW, Mayers DF. 2011. Numerical solution of partial differential equations. Cambridge.
- Tsitouras Ch. 2011. Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying assumption. Computers and Mathematics with Applications. 62, 770–775. (https://doi.org/10.1016/j.camwa.2011.06.002).
- Larson DA. 1978. Transient bounsa and time-asymptotic behavior of solutions to nonlinear equations of Fisher type. SIAM Journal on Applied Mathematics. 34, 98–104. (https://doi.org/10.1137/0134008).
- Murray JD. 1984. Asymptotic analysis. Springer, New York.
- Witelski TP. 1994. An asymptotic solution for traveling waves of a nonlinear-diffusion Fisher’s equation. Journal of Mathematical Biology. 33, 1–16. (doi:https://doi.org/10.1007/BF00160171).
- Tsoularis A, Wallace J. 2002. Analysis of logistic growth models. Mathematical Biosciences. 179:21–55. (https://doi.org/10.1016/S0025-5564(02)00096-2).
- Painter KJ, Sherratt JA. 2003. Modelling the movement of interacting cell populations. Journal of Theoretical Biology. 225:327–339. (https://doi.org/10.1016/S0022-5193(03)00258-3).
- Landman KA, Pettet GJ (1998) Modelling the action of proteinase and inhibitor in tissue invasion. Mathematical Biosciences. 154: 23–37. (https://doi.org/10.1016/S0025-5564(98)10038-X).