Time delay interferometry with minimal null frequencies (2403.01490v2)
Abstract: Time delay interferometry (TDI) is a key technique employed in gravitational wave (GW) space missions to mitigate laser frequency noise by combining multiple laser links and establishing an equivalent equal arm interferometry. The null frequencies will be introduced in noise spectra and GW response when the periodical signal/noise is canceled in synthesized laser links. These frequencies are characteristic frequencies (CFs) of a TDI which related to its geometry of combination. In this work, we implement a second-generation TDI configuration referred to as hybrid Relay to perform noise suppressions and data analysis, whose CFs are only one-quarter that of the fiducial second-generation Michelson observables. We examine the performance of TDI configuration in laser noise cancellation and clock noise suppression and justify its essential capabilities. To assess its robustness for signal extraction, we simulate data containing GW signals from massive black hole binaries and perform parameter inferences with comparisons against the fiducial Michelson TDI configuration. The results demonstrate that the alternative TDI solution could be more robust than Michelson in fulfilling data analysis.
- M. Colpi et al., LISA Definition Study Report, (2024), arXiv:2402.07571 [astro-ph.CO] .
- J. W. Armstrong, F. B. Estabrook, and M. Tinto, Time-Delay Interferometry for Space-based Gravitational Wave Searches, Astrophys. J. 527, 814 (1999).
- F. B. Estabrook, M. Tinto, and J. W. Armstrong, Time-delay analysis of LISA gravitational wave data: Elimination of spacecraft motion effects, Phys. Rev. D 62, 042002 (2000).
- J. W. Armstrong, F. B. Estabrook, and M. Tinto, Sensitivities of alternate LISA configurations, Classical and Quantum Gravity 18, 4059 (2001).
- S. L. Larson, R. W. Hellings, and W. A. Hiscock, Unequal arm space borne gravitational wave detectors, Phys. Rev. D 66, 062001 (2002), arXiv:gr-qc/0206081 .
- S. V. Dhurandhar, K. Rajesh Nayak, and J. Y. Vinet, Algebraic approach to time-delay data analysis for LISA, Phys. Rev. D 65, 102002 (2002), arXiv:gr-qc/0112059 [gr-qc] .
- M. Vallisneri, Synthetic LISA: Simulating time delay interferometry in a model LISA, Phys. Rev. D 71, 022001 (2005a), arXiv:gr-qc/0407102 [gr-qc] .
- M. Tinto and S. V. Dhurandhar, Time-delay interferometry, Living Rev. Rel. 24, 1 (2021).
- N. J. Cornish and R. W. Hellings, The Effects of orbital motion on LISA time delay interferometry, Class. Quant. Grav. 20, 4851 (2003), arXiv:gr-qc/0306096 [gr-qc] .
- M. Tinto, F. B. Estabrook, and J. Armstrong, Time delay interferometry with moving spacecraft arrays, Phys. Rev. D 69, 082001 (2004), arXiv:gr-qc/0310017 .
- S. Dhurandhar, K. Nayak, and J. Vinet, Time Delay Interferometry for LISA with one arm dysfunctional, Class. Quant. Grav. 27, 135013 (2010), arXiv:1001.4911 [gr-qc] .
- M. Muratore, D. Vetrugno, and S. Vitale, Revisitation of time delay interferometry combinations that suppress laser noise in LISA, arXiv e-prints (2020), arXiv:2001.11221 [astro-ph.IM] .
- M. Tinto, S. Dhurandhar, and D. Malakar, Second-generation time-delay interferometry, Phys. Rev. D 107, 082001 (2023), arXiv:2212.05967 [gr-qc] .
- J. Page and T. B. Littenberg, Bayesian time delay interferometry, Phys. Rev. D 104, 084037 (2021), arXiv:2107.08174 [gr-qc] .
- J. Page and T. B. Littenberg, Bayesian time delay interferometry for orbiting LISA: Accounting for the time dependence of spacecraft separations, Phys. Rev. D 108, 044065 (2023), arXiv:2305.14186 [gr-qc] .
- M. Otto, G. Heinzel, and K. Danzmann, TDI and clock noise removal for the split interferometry configuration of LISA, Class. Quant. Grav. 29, 205003 (2012).
- M. Otto, Time-Delay Interferometry Simulations for the Laser Interferometer Space Antenna (2015).
- M. Tinto and O. Hartwig, Time-Delay Interferometry and Clock-Noise Calibration, Phys. Rev. D 98, 042003 (2018), arXiv:1807.02594 [gr-qc] .
- O. Hartwig and J.-B. Bayle, Clock-jitter reduction in LISA time-delay interferometry combinations, Phys. Rev. D 103, 123027 (2021), arXiv:2005.02430 [astro-ph.IM] .
- O. Hartwig, Instrumental modelling and noise reduction algorithms for the Laser Interferometer Space Antenna, Ph.D. thesis, Leibniz U., Hannover (2021).
- G. Wang, SATDI: Simulation and Analysis for Time-Delay Interferometry, (2024), arXiv:2403.xxxx [gr-qc] .
- G. Wang, Time-delay Interferometry for ASTROD-GW (2011).
- M. Vallisneri, Geometric time delay interferometry, Phys. Rev. D 72, 042003 (2005b), [Erratum: Phys. Rev. D 76, 109903(2007)], arXiv:gr-qc/0504145 [gr-qc] .
- O. Hartwig and M. Muratore, Characterization of time delay interferometry combinations for the LISA instrument noise, Phys. Rev. D 105, 062006 (2022), arXiv:2111.00975 [gr-qc] .
- G. Wang and W.-T. Ni, Numerical simulation of time delay interferometry for TAIJI and new LISA, Res. Astron. Astrophys. 19, 058 (2019), arXiv:1707.09127 [astro-ph.IM] .
- J.-B. Bayle and O. Hartwig, Unified model for the LISA measurements and instrument simulations, Phys. Rev. D 107, 083019 (2023), arXiv:2212.05351 [gr-qc] .
- G. Wang and W.-T. Ni, Revisiting time delay interferometry for unequal-arm LISA and TAIJI, Phys. Scripta 98, 075005 (2023), arXiv:2008.05812 [gr-qc] .
- N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- T. P. Robitaille et al. (Astropy), Astropy: A Community Python Package for Astronomy, Astron. Astrophys. 558, A33 (2013), arXiv:1307.6212 [astro-ph.IM] .
- A. Bohé et al., Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors, Phys. Rev. D 95, 044028 (2017), arXiv:1611.03703 [gr-qc] .
- J. D. Romano and N. J. Cornish, Detection methods for stochastic gravitational-wave backgrounds: a unified treatment, Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
- R. Cotesta, S. Marsat, and M. Pürrer, Frequency domain reduced order model of aligned-spin effective-one-body waveforms with higher-order modes, Phys. Rev. D 101, 124040 (2020), arXiv:2003.12079 [gr-qc] .
- F. Feroz, M. P. Hobson, and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398, 1601 (2009), arXiv:0809.3437 [astro-ph] .
- C. Cutler and M. Vallisneri, LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms, Phys. Rev. D 76, 104018 (2007), arXiv:0707.2982 [gr-qc] .
- M. J. Williams, J. Veitch, and C. Messenger, Nested sampling with normalizing flows for gravitational-wave inference, Phys. Rev. D 103, 103006 (2021), arXiv:2102.11056 [gr-qc] .
- T. B. Littenberg and N. J. Cornish, Prototype global analysis of LISA data with multiple source types, Phys. Rev. D 107, 063004 (2023), arXiv:2301.03673 [gr-qc] .
- T. pandas development team, pandas-dev/pandas: Pandas (2020).
- S. A. Usman et al., The PyCBC search for gravitational waves from compact binary coalescence, Class. Quant. Grav. 33, 215004 (2016), arXiv:1508.02357 [gr-qc] .
- LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration, LVK Algorithm Library - LALSuite, Free software (GPL) (2018).
- K. Wette, SWIGLAL: Python and Octave interfaces to the LALSuite gravitational-wave data analysis libraries, SoftwareX 12, 100634 (2020).
- G. Ashton et al., BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy, Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
- J. D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9, 90 (2007).
- A. Lewis, GetDist: a Python package for analysing Monte Carlo samples, (2019), arXiv:1910.13970 [astro-ph.IM] .