Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Discrete-time Dynamic Outer Approximation of the Intersection of Ellipsoids (2403.01478v2)

Published 3 Mar 2024 in math.OC, cs.SY, and eess.SY

Abstract: This paper presents the first discrete-time distributed algorithm to track the tightest ellipsoids that outer approximates the global dynamic intersection of ellipsoids. Given an undirected network, we consider a setup where each node measures an ellipsoid, defined as a time-varying positive semidefinite matrix. The goal is to devise a distributed algorithm to track the tightest outer approximation of the intersection of all the ellipsoids. The solution is based on a novel distributed reformulation of the original centralized semi-definite outer L\"owner-John program, characterized by a non-separable objective function and global constraints. We prove finite-time convergence to the global minima of the centralized problem in the static case and finite-time bounded tracking error in the dynamic case. Moreover, we prove boundedness of estimation in the tracking of the global optimum and robustness in the estimation against time-varying inputs. We illustrate the properties of the algorithm with different simulated examples, including a distributed estimation showcase where our proposal is integrated into a distributed Kalman filter to surpass the state-of-the-art in mean square error performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. J. B. Lasserre, “A generalization of Löwner-John’s ellipsoid theorem,” Math. Program., vol. 152, pp. 559–591, 2015.
  2. D. Malyuta, Y. Yu, P. Elango, and B. Açıkmeşe, “Advances in trajectory optimization for space vehicle control,” Annual Reviews in Control, vol. 52, pp. 282–315, 2021.
  3. Q. Hu, H. Yang, H. Dong, and X. Zhao, “Learning-based 6-DOF control for autonomous proximity operations under motion constraints,” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 6, pp. 4097–4109, 2021.
  4. R. Deits and R. Tedrake, “Computing large convex regions of obstacle-free space through semidefinite programming,” in Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh International Workshop on the Algorithmic Foundations of Robotics.   Springer, 2015, pp. 109–124.
  5. M. Petersen and R. Tedrake, “Growing convex collision-free regions in configuration space using nonlinear programming,” arXiv preprint arXiv:2303.14737, 2023.
  6. E. Sebastián, E. Montijano, and C. Sagüés, “All-in-one: Certifiable optimal distributed kalman filter under unknown correlations,” in IEEE Conference on Decision and Control, 2021, pp. 6578–6583.
  7. ——, “ECO-DKF: Event-triggered and certifiable optimal distributed kalman filter under unknown correlations,” arXiv preprint arXiv:2311.02406, 2023.
  8. A. D. Saravanos, Y. Li, and E. A. Theodorou, “Distributed hierarchical distribution control for very-large-scale clustered multi-agent systems,” in Robotics: Science and Systems, 2023.
  9. H. Yang and L. Carlone, “Certifiably optimal outlier-robust geometric perception: Semidefinite relaxations and scalable global optimization,” IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 3, pp. 2816–2834, 2022.
  10. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review, vol. 38, no. 1, pp. 49–95, 1996.
  11. D. Henrion, S. Tarbouriech, and D. Arzelier, “LMI approximations for the radius of the intersection of ellipsoids: Survey,” J. Optim. Theory Appl., vol. 108, no. 1, pp. 1–28, 2001.
  12. W. Schwarting, A. Pierson, S. Karaman, and D. Rus, “Stochastic dynamic games in belief space,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2157–2172, 2021.
  13. R. Aldana-López, E. Sebastián, R. Aragüés, E. Montijano, and C. Sagüés, “Distributed outer approximation of the intersection of ellipsoids,” IEEE Control Systems Letters, 2023.
  14. G. Notarstefano, I. Notarnicola, A. Camisa et al., “Distributed optimization for smart cyber-physical networks,” Foundations and Trends® in Systems and Control, vol. 7, no. 3, pp. 253–383, 2019.
  15. G. Carnevale, I. Notarnicola, L. Marconi, and G. Notarstefano, “Triggered gradient tracking for asynchronous distributed optimization,” Automatica, vol. 147, p. 110726, 2023.
  16. A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 601–615, 2014.
  17. A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic optimization and gossip algorithms with compressed communication,” in International Conference on Machine Learning.   PMLR, 2019, pp. 3478–3487.
  18. B. Van Scoy and L. Lessard, “A universal decomposition for distributed optimization algorithms,” IEEE Control Systems Letters, vol. 6, pp. 3044–3049, 2022.
  19. D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, and L. Schenato, “Newton-raphson consensus for distributed convex optimization,” IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 994–1009, 2015.
  20. V. S. Mai, R. J. La, T. Zhang, and A. Battou, “Distributed optimization with global constraints using noisy measurements,” IEEE Trans. Autom. Control, 2023.
  21. J. Martinez-Piazuelo, G. Diaz-Garcia, N. Quijano, and L. F. Giraldo, “Discrete-time distributed population dynamics for optimization and control,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 11, pp. 7112–7122, 2022.
  22. L. Romao, K. Margellos, G. Notarstefano, and A. Papachristodoulou, “Subgradient averaging for multi-agent optimisation with different constraint sets,” Automatica, vol. 131, p. 109738, 2021.
  23. X. Le, S. Chen, Z. Yan, and J. Xi, “A neurodynamic approach to distributed optimization with globally coupled constraints,” IEEE IEEE Trans. Cybern., vol. 48, no. 11, pp. 3149–3158, 2017.
  24. I. Notarnicola and G. Notarstefano, “Constraint-coupled distributed optimization: a relaxation and duality approach,” IEEE Trans. Control Netw. Syst., vol. 7, no. 1, pp. 483–492, 2019.
  25. N. Bastianello, L. Schenato, and R. Carli, “A novel bound on the convergence rate of ADMM for distributed optimization,” Automatica, vol. 142, p. 110403, 2022.
  26. K. Bredies, E. Chenchene, and E. Naldi, “Graph and distributed extensions of the douglas-rachford method,” arXiv preprint arXiv:2211.04782, 2022.
  27. D. Meng, M. Fazel, and M. Mesbahi, “Proximal alternating direction method of multipliers for distributed optimization on weighted graphs,” in IEEE Conference on Decision and Control, 2015, pp. 1396–1401.
  28. N. Parikh and S. Boyd, “Block splitting for distributed optimization,” Mathematical Programming Computation, vol. 6, no. 1, pp. 77–102, 2014.
  29. W. Li, X. Zeng, Y. Hong, and H. Ji, “Distributed consensus-based solver for semi-definite programming: An optimization viewpoint,” Automatica, vol. 131, p. 109737, 2021.
  30. M. Bürger, G. Notarstefano, and F. Allgöwer, “A polyhedral approximation framework for convex and robust distributed optimization,” IEEE Trans. Autom. Control, vol. 59, no. 2, pp. 384–395, 2013.
  31. T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019.
  32. R. E. Wendell and A. P. Hurter Jr, “Minimization of a non-separable objective function subject to disjoint constraints,” Operations Research, vol. 24, no. 4, pp. 643–657, 1976.
  33. G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization over time-varying digraphs,” Mathematical Programming, vol. 176, pp. 497–544, 2019.
  34. M. Meselhi, R. Sarker, D. Essam, and S. Elsayed, “A decomposition approach for large-scale non-separable optimization problems,” Applied Soft Computing, vol. 115, p. 108168, 2022.
  35. R. Olfati-Saber, “Distributed Kalman filter with embedded consensus filters,” in IEEE CDC, 2005, pp. 8179–8184.
  36. S. Julier and J. K. Uhlmann, “General decentralized data fusion with covariance intersection,” in Handbook of multisensor data fusion.   CRC Press, 2017, pp. 339–364.
  37. M. Lippi, A. Furchì, A. Marino, and A. Gasparri, “An adaptive distributed protocol for finite-time infimum or supremum dynamic consensus,” IEEE Control Systems Letters, vol. 7, pp. 401–406, 2022.
  38. D. Deplano, M. Franceschelli, and A. Giua, “Dynamic max-consensus with local self-tuning,” IFAC-PapersOnLine, vol. 55, no. 13, pp. 127–132, 2022.
  39. W. Niehsen, “Information fusion based on fast covariance intersection filtering,” in Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002., vol. 2, 2002, pp. 901–904 vol.2.
  40. R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in IEEE CDC, 2007, pp. 5492–5498.
  41. R. E. Kalman, “A new approach to linear filtering and prediction problems,” ASME Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

Summary

We haven't generated a summary for this paper yet.