Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Accelerating Greedy Coordinate Gradient and General Prompt Optimization via Probe Sampling (2403.01251v3)

Published 2 Mar 2024 in cs.CL

Abstract: Safety of LLMs has become a critical issue given their rapid progresses. Greedy Coordinate Gradient (GCG) is shown to be effective in constructing adversarial prompts to break the aligned LLMs, but optimization of GCG is time-consuming. To reduce the time cost of GCG and enable more comprehensive studies of LLM safety, in this work, we study a new algorithm called $\texttt{Probe sampling}$. At the core of the algorithm is a mechanism that dynamically determines how similar a smaller draft model's predictions are to the target model's predictions for prompt candidates. When the target model is similar to the draft model, we rely heavily on the draft model to filter out a large number of potential prompt candidates. Probe sampling achieves up to $5.6$ times speedup using Llama2-7b-chat and leads to equal or improved attack success rate (ASR) on the AdvBench. Furthermore, probe sampling is also able to accelerate other prompt optimization techniques and adversarial methods, leading to acceleration of $1.8\times$ for AutoPrompt, $2.4\times$ for APE and $2.4\times$ for AutoDAN.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.