Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting the Efficiency of Quantum Divider through Effective Design Space Exploration (2403.01206v1)

Published 2 Mar 2024 in quant-ph and cs.ET

Abstract: Rapid progress in the design of scalable, robust quantum computing necessitates efficient quantum circuit implementation for algorithms with practical relevance. For several algorithms, arithmetic kernels, in particular, division plays an important role. In this manuscript, we focus on enhancing the performance of quantum slow dividers by exploring the design choices of its sub-blocks, such as, adders. Through comprehensive design space exploration of state-of-the-art quantum addition building blocks, our work have resulted in an impressive achievement: a reduction in Toffoli Depth of up to 94.06%, accompanied by substantial reductions in both Toffoli and Qubit Count of up to 91.98% and 99.37%, respectively. This paper offers crucial perspectives on efficient design of quantum dividers, and emphasizes the importance of adopting a systematic design space exploration approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. S. Hallgren, “Polynomial-time quantum algorithms for pell’s equation and the principal ideal problem,” J. ACM, vol. 54, no. 1, mar 2007. [Online]. Available: https://doi.org/10.1145/1206035.1206039
  2. W. van Dam and S. Hallgren, “Efficient quantum algorithms for shifted quadratic character problems,” 2001. [Online]. Available: https://arxiv.org/abs/quant-ph/0011067
  3. W. van Dam, S. Hallgren, and L. Ip, “Quantum algorithms for some hidden shift problems,” SIAM Journal on Computing, vol. 36, 11 2002.
  4. H. Thapliyal, T. S. S. Varun, E. Munoz-Coreas, K. A. Britt, and T. S. Humble, “Quantum circuit designs of integer division optimizing t-count and t-depth,” in 2017 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), 2017, pp. 123–128.
  5. H. Thapliyal, E. Munoz-Coreas, T. S. S. Varun, and T. S. Humble, “Quantum circuit designs of integer division optimizing t-count and t-depth,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 02, pp. 1045–1056, apr 2021.
  6. S. S. Gayathri, R. Kumar, S. Dhanalakshmi, G. Dooly, and D. B. Duraibabu, “T-count optimized quantum circuit designs for single-precision floating-point division,” Electronics, vol. 10, p. 703, 03 2021.
  7. S. S. Gayathri, R. Kumar, and S. Dhanalakshmi, “Efficient floating-point division quantum circuit using newton-raphson division,” Journal of Physics: Conference Series, vol. 2335, no. 1, p. 012058, sep 2022. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/2335/1/012058
  8. Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization for high speed adders: A pareto driven machine learning approach,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 38, no. 12, p. 2298–2311, dec 2019. [Online]. Available: https://doi.org/10.1109/TCAD.2018.2878129
  9. P. Selinger, “Quantum circuits of t𝑡titalic_t-depth one,” Phys. Rev. A, vol. 87, p. 042302, Apr 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.87.042302
  10. M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Design automation and design space exploration for quantum computers,” in Design, Automation and Test in Europe Conference and Exhibition (DATE), 2017, 2017, pp. 470–475.
  11. A. Khosropour, H. Aghababa, and B. Forouzandeh, “Quantum division circuit based on restoring division algorithm,” 04 2011, pp. 1037–1040.
  12. V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary arithmetic operations,” Physical Review A, vol. 54, 11 1995.
  13. S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new quantum ripple-carry addition circuit,” 2004.
  14. T. Draper, S. Kutin, E. Rains, and K. Svore, “A logarithmic-depth quantum carry-lookahead adder,” Quantum Information and Computation, vol. 6, 07 2004.
  15. Y. Takahashi and N. Kunihiro, “A fast quantum circuit for addition with few qubits,” Quantum Information and Computation, vol. 8, pp. 636–649, 07 2008.
  16. Y. Takahashi, S. Tani, and N. Kunihiro, “Quantum addition circuits and unbounded fan-out,” Quantum Information and Computation, vol. 10, 10 2009.
  17. F. Wang, M. Luo, H. Li, Z. Qu, and X. Wang, “Improved quantum ripple-carry addition circuit,” Science China Information Sciences, vol. 59, 02 2016.
  18. C. Gidney, “Halving the cost of quantum addition,” Quantum, vol. 2, p. 74, Jun. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-06-18-74
  19. S. S. Gayathri, R. Kumar, D. Samiappan, B. Kaushik, and M. Haghparast, “T-count optimized wallace tree integer multiplier for quantum computing,” International Journal of Theoretical Physics, vol. 60, pp. 1–13, 08 2021.
  20. S. Wang, A. Baksi, and A. Chattopadhyay, “A higher radix architecture for quantum carry-lookahead adder,” Scientific Reports, vol. 13, 09 2023.
  21. S. Wang and A. Chattopadhyay, “Reducing depth of quantum adder using ling structure,” in Very Large Scale Integration (VLSI-SoC), 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.