Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learn Suspected Anomalies from Event Prompts for Video Anomaly Detection (2403.01169v2)

Published 2 Mar 2024 in cs.CV

Abstract: Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. However, the ambiguous nature of anomaly definitions across contexts may introduce inaccuracy in discriminating abnormal and normal events. To show the model what is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate its effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (86.5\%, \hl{90.4}\%, 94.4\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases. The data, code, and models can be found at: \url{https://github.com/shiwoaz/lap}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (115)
  1. Z. Liu, X.-M. Wu, D. Zheng, K.-Y. Lin, and W.-S. Zheng, “Generating anomalies for video anomaly detection with prompt-based feature mapping,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 24 500–24 510.
  2. X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” arXiv preprint arXiv:2101.00190, 2021.
  3. B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient prompt tuning,” arXiv preprint arXiv:2104.08691, 2021.
  4. D. Cao, F. Jia, S. O. Arik, T. Pfister, Y. Zheng, W. Ye, and Y. Liu, “Tempo: Prompt-based generative pre-trained transformer for time series forecasting,” arXiv preprint arXiv:2310.04948, 2023.
  5. L. Yao, J. Han, Y. Wen, X. Liang, D. Xu, W. Zhang, Z. Li, C. Xu, and H. Xu, “Detclip: Dictionary-enriched visual-concept paralleled pre-training for open-world detection,” Advances in Neural Information Processing Systems, vol. 35, pp. 9125–9138, 2022.
  6. F. Sato, R. Hachiuma, and T. Sekii, “Prompt-guided zero-shot anomaly action recognition using pretrained deep skeleton features,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 6471–6480.
  7. X. Wang, R. Xian, T. Guan, and D. Manocha, “Prompt learning for action recognition,” arXiv preprint arXiv:2305.12437, 2023.
  8. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
  9. H. Bao, L. Dong, S. Piao, and F. Wei, “Beit: Bert pre-training of image transformers,” arXiv preprint arXiv:2106.08254, 2021.
  10. R. Wang, D. Chen, Z. Wu, Y. Chen, X. Dai, M. Liu, Y.-G. Jiang, L. Zhou, and L. Yuan, “Bevt: Bert pretraining of video transformers,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 14 733–14 743.
  11. Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu, “Video swin transformer,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 3202–3211.
  12. Y. Liu, J. Liu, J. Lin, M. Zhao, and L. Song, “Appearance-motion united auto-encoder framework for video anomaly detection,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 5, pp. 2498–2502, 2022.
  13. Y. Tian, G. Pang, Y. Chen, R. Singh, J. W. Verjans, and G. Carneiro, “Weakly-supervised video anomaly detection with robust temporal feature magnitude learning,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 4975–4986.
  14. N. Li, J.-X. Zhong, X. Shu, and H. Guo, “Weakly-supervised anomaly detection in video surveillance via graph convolutional label noise cleaning,” Neurocomputing, vol. 481, pp. 154–167, 2022.
  15. M.-I. Georgescu, A. Barbalau, R. T. Ionescu, F. S. Khan, M. Popescu, and M. Shah, “Anomaly detection in video via self-supervised and multi-task learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 12 742–12 752.
  16. X. Zeng, Y. Jiang, W. Ding, H. Li, Y. Hao, and Z. Qiu, “A hierarchical spatio-temporal graph convolutional neural network for anomaly detection in videos,” IEEE Transactions on Circuits and Systems for Video Technology, 2021.
  17. H. Park, J. Noh, and B. Ham, “Learning memory-guided normality for anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 14 372–14 381.
  18. D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and A. v. d. Hengel, “Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1705–1714.
  19. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  20. S. Yu, C. Wang, Q. Mao, Y. Li, and J. Wu, “Cross-epoch learning for weakly supervised anomaly detection in surveillance videos,” IEEE Signal Processing Letters, vol. 28, pp. 2137–2141, 2021.
  21. Y. Zhu, W. Bao, and Q. Yu, “Towards open set video anomaly detection,” in European Conference on Computer Vision.   Springer, 2022, pp. 395–412.
  22. C. Zhang, G. Li, Q. Xu, X. Zhang, L. Su, and Q. Huang, “Weakly supervised anomaly detection in videos considering the openness of events,” IEEE transactions on intelligent transportation systems, vol. 23, no. 11, pp. 21 687–21 699, 2022.
  23. C. Zhang, G. Li, L. Su, W. Zhang, and Q. Huang, “Video anomaly detection using open data filter and domain adaptation,” in 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP).   IEEE, 2020, pp. 395–398.
  24. K. Liu and H. Ma, “Exploring background-bias for anomaly detection in surveillance videos,” in Proceedings of the 27th ACM International Conference on Multimedia, 2019, pp. 1490–1499.
  25. F. Landi, C. G. Snoek, and R. Cucchiara, “Anomaly locality in video surveillance,” arXiv preprint arXiv:1901.10364, 2019.
  26. M. Z. Zaheer, A. Mahmood, M. H. Khan, M. Segu, F. Yu, and S.-I. Lee, “Generative cooperative learning for unsupervised video anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 14 744–14 754.
  27. A. O. Tur, N. Dall’Asen, C. Beyan, and E. Ricci, “Exploring diffusion models for unsupervised video anomaly detection,” arXiv preprint arXiv:2304.05841, 2023.
  28. G. Pang, C. Yan, C. Shen, A. v. d. Hengel, and X. Bai, “Self-trained deep ordinal regression for end-to-end video anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 12 173–12 182.
  29. Y. Liu, C.-L. Li, and B. Póczos, “Classifier two sample test for video anomaly detections.” in BMVC, 2018, p. 71.
  30. J. Hu, G. Yu, S. Wang, E. Zhu, Z. Cai, and X. Zhu, “Detecting anomalous events from unlabeled videos via temporal masked auto-encoding,” in 2022 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2022, pp. 1–6.
  31. Y. Wang, Y. Qiu, P. Cheng, and J. Zhang, “Hybrid cnn-transformer features for visual place recognition,” IEEE Transactions on Circuits and Systems for Video Technology, 2022.
  32. W. Luo, W. Liu, and S. Gao, “Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection,” Neurocomputing, vol. 444, pp. 332–337, 2021.
  33. L. Wang, J. Tian, S. Zhou, H. Shi, and G. Hua, “Memory-augmented appearance-motion network for video anomaly detection,” Pattern Recognition, vol. 138, p. 109335, 2023.
  34. Z. Tang, Y. Liao, S. Liu, G. Li, X. Jin, H. Jiang, Q. Yu, and D. Xu, “Human-centric spatio-temporal video grounding with visual transformers,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 12, pp. 8238–8249, 2021.
  35. K. Doshi and Y. Yilmaz, “Online anomaly detection in surveillance videos with asymptotic bound on false alarm rate,” Pattern Recognition, vol. 114, p. 107865, 2021.
  36. S. Petrocchi, G. Giorgi, and M. G. Cimino, “A real-time deep learning approach for real-world video anomaly detection,” in Proceedings of the 16th International Conference on Availability, Reliability and Security, 2021, pp. 1–9.
  37. D. Neimark, O. Bar, M. Zohar, and D. Asselmann, “Video transformer network,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 3163–3172.
  38. A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C. Schmid, “Vivit: A video vision transformer,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 6836–6846.
  39. X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu, “Revisiting multiple instance neural networks,” Pattern Recognition, vol. 74, pp. 15–24, 2018.
  40. J. Tang, K. Li, M. Hou, X. Jin, W. Kong, Y. Ding, and Q. Zhao, “Mmt: Multi-way multi-modal transformer for multimodal learning,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, LD Raedt, Ed. International Joint Conferences on Artificial Intelligence Organization, vol. 7, 2022, pp. 3458–3465.
  41. Y. Ji, H. Zhang, Z. Jie, L. Ma, and Q. J. Wu, “Casnet: A cross-attention siamese network for video salient object detection,” IEEE transactions on neural networks and learning systems, vol. 32, no. 6, pp. 2676–2690, 2020.
  42. D. Wei, Y. Liu, X. Zhu, J. Liu, and X. Zeng, “Msaf: Multimodal supervise-attention enhanced fusion for video anomaly detection,” IEEE Signal Processing Letters, vol. 29, pp. 2178–2182, 2022.
  43. S. Li, F. Liu, and L. Jiao, “Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 2, 2022, pp. 1395–1403.
  44. R. Morais, V. Le, T. Tran, B. Saha, M. Mansour, and S. Venkatesh, “Learning regularity in skeleton trajectories for anomaly detection in videos,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 11 996–12 004.
  45. D. Chen, L. Yue, X. Chang, M. Xu, and T. Jia, “Nm-gan: Noise-modulated generative adversarial network for video anomaly detection,” Pattern Recognition, vol. 116, p. 107969, 2021.
  46. L. Wang, H. Tan, F. Zhou, W. Zuo, and P. Sun, “Unsupervised anomaly video detection via a double-flow convlstm variational autoencoder,” IEEE Access, vol. 10, pp. 44 278–44 289, 2022.
  47. Z. Liu, Y. Nie, C. Long, Q. Zhang, and G. Li, “A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 13 588–13 597.
  48. A. A. Pol, V. Berger, C. Germain, G. Cerminara, and M. Pierini, “Anomaly detection with conditional variational autoencoders,” in 2019 18th IEEE international conference on machine learning and applications (ICMLA).   IEEE, 2019, pp. 1651–1657.
  49. D. M. Allen, “Mean square error of prediction as a criterion for selecting variables,” Technometrics, vol. 13, no. 3, pp. 469–475, 1971.
  50. U. Ruby and V. Yendapalli, “Binary cross entropy with deep learning technique for image classification,” Int. J. Adv. Trends Comput. Sci. Eng, vol. 9, no. 10, 2020.
  51. R. Cai, H. Zhang, W. Liu, S. Gao, and Z. Hao, “Appearance-motion memory consistency network for video anomaly detection,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 2, 2021, pp. 938–946.
  52. M. Astrid, M. Z. Zaheer, and S.-I. Lee, “Synthetic temporal anomaly guided end-to-end video anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 207–214.
  53. B. Liu, Y. Chen, S. Liu, and H.-S. Kim, “Deep learning in latent space for video prediction and compression,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 701–710.
  54. C. Huang, J. Wen, Y. Xu, Q. Jiang, J. Yang, Y. Wang, and D. Zhang, “Self-supervised attentive generative adversarial networks for video anomaly detection,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  55. Z. Fang, J. T. Zhou, Y. Xiao, Y. Li, and F. Yang, “Multi-encoder towards effective anomaly detection in videos,” IEEE Transactions on Multimedia, vol. 23, pp. 4106–4116, 2020.
  56. N. Li, F. Chang, and C. Liu, “Spatial-temporal cascade autoencoder for video anomaly detection in crowded scenes,” IEEE Transactions on Multimedia, vol. 23, pp. 203–215, 2020.
  57. S. Saypadith and T. Onoye, “Video anomaly detection based on deep generative network,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2021, pp. 1–5.
  58. Y. Wang, C. Qin, Y. Bai, Y. Xu, X. Ma, and Y. Fu, “Making reconstruction-based method great again for video anomaly detection,” in 2022 IEEE International Conference on Data Mining (ICDM).   IEEE, 2022, pp. 1215–1220.
  59. Y. Tang, L. Zhao, S. Zhang, C. Gong, G. Li, and J. Yang, “Integrating prediction and reconstruction for anomaly detection,” Pattern Recognition Letters, vol. 129, pp. 123–130, 2020.
  60. W. Luo, W. Liu, D. Lian, J. Tang, L. Duan, X. Peng, and S. Gao, “Video anomaly detection with sparse coding inspired deep neural networks,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 3, pp. 1070–1084, 2019.
  61. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
  62. Y. Gong, C. Wang, X. Dai, S. Yu, L. Xiang, and J. Wu, “Multi-scale continuity-aware refinement network for weakly supervised video anomaly detection,” in 2022 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2022, pp. 1–6.
  63. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  64. W. Luo, W. Liu, and S. Gao, “Remembering history with convolutional lstm for anomaly detection,” in 2017 IEEE International conference on multimedia and expo (ICME).   IEEE, 2017, pp. 439–444.
  65. W. Liu, W. Luo, D. Lian, and S. Gao, “Future frame prediction for anomaly detection–a new baseline,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6536–6545.
  66. D. Li, X. Nie, X. Li, Y. Zhang, and Y. Yin, “Context-related video anomaly detection via generative adversarial network,” Pattern Recognition Letters, vol. 156, pp. 183–189, 2022.
  67. G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention all you need for video understanding?” in ICML, vol. 2, no. 3, 2021, p. 4.
  68. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 16 000–16 009.
  69. V.-T. Le and Y.-G. Kim, “Attention-based residual autoencoder for video anomaly detection,” Applied Intelligence, vol. 53, no. 3, pp. 3240–3254, 2023.
  70. Y. Zhang, H. Lu, L. Zhang, X. Ruan, and S. Sakai, “Video anomaly detection based on locality sensitive hashing filters,” Pattern Recognition, vol. 59, pp. 302–311, 2016.
  71. Y. Xia, X. Cao, F. Wen, G. Hua, and J. Sun, “Learning discriminative reconstructions for unsupervised outlier removal,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1511–1519.
  72. C. Park, M. Cho, M. Lee, and S. Lee, “Fastano: Fast anomaly detection via spatio-temporal patch transformation,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 2249–2259.
  73. Y. Chang, Z. Tu, W. Xie, B. Luo, S. Zhang, H. Sui, and J. Yuan, “Video anomaly detection with spatio-temporal dissociation,” Pattern Recognition, vol. 122, p. 108213, 2022.
  74. M. Zhao, Y. Liu, J. Liu, D. Li, and X. Zeng, “Lgn-net: Local-global normality network for video anomaly detection,” arXiv preprint arXiv:2211.07454, 2022.
  75. A. O. Tur, N. Dall’Asen, C. Beyan, and E. Ricci, “Unsupervised video anomaly detection with diffusion models conditioned on compact motion representations,” arXiv preprint arXiv:2307.01533, 2023.
  76. Y. Liu, D. Li, W. Zhu, D. Yang, J. Liu, and L. Song, “Msn-net: Multi-scale normality network for video anomaly detection,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2023, pp. 1–5.
  77. Y. Hao, J. Li, N. Wang, X. Wang, and X. Gao, “Spatiotemporal consistency-enhanced network for video anomaly detection,” Pattern Recognition, vol. 121, p. 108232, 2022.
  78. M. Cho, T. Kim, W. J. Kim, S. Cho, and S. Lee, “Unsupervised video anomaly detection via normalizing flows with implicit latent features,” Pattern Recognition, vol. 129, p. 108703, 2022.
  79. J. Wang and A. Cherian, “Gods: Generalized one-class discriminative subspaces for anomaly detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8201–8211.
  80. W. Ullah, T. Hussain, and S. W. Baik, “Vision transformer attention with multi-reservoir echo state network for anomaly recognition,” Information Processing & Management, vol. 60, no. 3, p. 103289, 2023.
  81. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  82. J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-encoders for hierarchical feature extraction,” in Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21.   Springer, 2011, pp. 52–59.
  83. B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support vector method for novelty detection,” Advances in neural information processing systems, vol. 12, 1999.
  84. M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S. Davis, “Learning temporal regularity in video sequences,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 733–742.
  85. J.-C. Feng, F.-T. Hong, and W.-S. Zheng, “Mist: Multiple instance self-training framework for video anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 14 009–14 018.
  86. W. Luo, W. Liu, and S. Gao, “A revisit of sparse coding based anomaly detection in stacked rnn framework,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 341–349.
  87. P. Wu, J. Liu, Y. Shi, Y. Sun, F. Shao, Z. Wu, and Z. Yang, “Not only look, but also listen: Learning multimodal violence detection under weak supervision,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16.   Springer, 2020, pp. 322–339.
  88. P. Wu and J. Liu, “Learning causal temporal relation and feature discrimination for anomaly detection,” IEEE Transactions on Image Processing, vol. 30, pp. 3513–3527, 2021.
  89. Y. Pu and X. Wu, “Locality-aware attention network with discriminative dynamics learning for weakly supervised anomaly detection,” in 2022 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2022, pp. 1–6.
  90. S. Chang, Y. Li, S. Shen, J. Feng, and Z. Zhou, “Contrastive attention for video anomaly detection,” IEEE Transactions on Multimedia, vol. 24, pp. 4067–4076, 2021.
  91. D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal features with 3d convolutional networks,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 4489–4497.
  92. K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet?” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018, pp. 6546–6555.
  93. J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the kinetics dataset,” in proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.
  94. C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 fps in matlab,” in Proceedings of the IEEE international conference on computer vision, 2013, pp. 2720–2727.
  95. J.-X. Zhong, N. Li, W. Kong, S. Liu, T. H. Li, and G. Li, “Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 1237–1246.
  96. W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in surveillance videos,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6479–6488.
  97. A. Panariello, A. Porrello, S. Calderara, and R. Cucchiara, “Consistency-based self-supervised learning for temporal anomaly localization,” in European Conference on Computer Vision.   Springer, 2022, pp. 338–349.
  98. J.-C. Wu, H.-Y. Hsieh, D.-J. Chen, C.-S. Fuh, and T.-L. Liu, “Self-supervised sparse representation for video anomaly detection,” in European Conference on Computer Vision.   Springer, 2022, pp. 729–745.
  99. Y. Chen, Z. Liu, B. Zhang, W. Fok, X. Qi, and Y.-C. Wu, “Mgfn: Magnitude-contrastive glance-and-focus network for weakly-supervised video anomaly detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 1, 2023, pp. 387–395.
  100. Z. Yang, Y. Guo, J. Wang, D. Huang, X. Bao, and Y. Wang, “Towards video anomaly detection in the real world: A binarization embedded weakly-supervised network,” IEEE Transactions on Circuits and Systems for Video Technology, 2023.
  101. H. Lv, Z. Yue, Q. Sun, B. Luo, Z. Cui, and H. Zhang, “Unbiased multiple instance learning for weakly supervised video anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8022–8031.
  102. C. Zhang, G. Li, Y. Qi, S. Wang, L. Qing, Q. Huang, and M.-H. Yang, “Exploiting completeness and uncertainty of pseudo labels for weakly supervised video anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16 271–16 280.
  103. H. Zhou, J. Yu, and W. Yang, “Dual memory units with uncertainty regulation for weakly supervised video anomaly detection,” arXiv preprint arXiv:2302.05160, 2023.
  104. W. Chen, K. T. Ma, Z. J. Yew, M. Hur, and D. A.-A. Khoo, “Tevad: Improved video anomaly detection with captions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5548–5558.
  105. H. Sapkota and Q. Yu, “Bayesian nonparametric submodular video partition for robust anomaly detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 3212–3221.
  106. H. Lv, C. Zhou, Z. Cui, C. Xu, Y. Li, and J. Yang, “Localizing anomalies from weakly-labeled videos,” IEEE transactions on image processing, vol. 30, pp. 4505–4515, 2021.
  107. M. Cho, M. Kim, S. Hwang, C. Park, K. Lee, and S. Lee, “Look around for anomalies: Weakly-supervised anomaly detection via context-motion relational learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 12 137–12 146.
  108. B. Wan, Y. Fang, X. Xia, and J. Mei, “Weakly supervised video anomaly detection via center-guided discriminative learning,” in 2020 IEEE international conference on multimedia and expo (ICME).   IEEE, 2020, pp. 1–6.
  109. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning.   PMLR, 2021, pp. 8748–8763.
  110. T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of sentence embeddings,” arXiv preprint arXiv:2104.08821, 2021.
  111. K. Lin, L. Li, C.-C. Lin, F. Ahmed, Z. Gan, Z. Liu, Y. Lu, and L. Wang, “Swinbert: End-to-end transformers with sparse attention for video captioning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 949–17 958.
  112. C. Cao, X. Zhang, S. Zhang, P. Wang, and Y. Zhang, “Weakly supervised video anomaly detection based on cross-batch clustering guidance,” in 2023 IEEE International Conference on Multimedia and Expo (ICME).   IEEE, 2023, pp. 2723–2728.
  113. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.
  114. M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis, “Multilayer perceptron and neural networks,” WSEAS Transactions on Circuits and Systems, vol. 8, no. 7, pp. 579–588, 2009.
  115. Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep neural networks with noisy labels,” Advances in neural information processing systems, vol. 31, 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Chenchen Tao (1 paper)
  2. Chong Wang (308 papers)
  3. Xiaohao Peng (1 paper)
  4. Jiafei Wu (15 papers)
  5. Jiangbo Qian (6 papers)
  6. Puning Zhao (21 papers)
  7. Jun Wang (991 papers)
Citations (1)