Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

A Bayesian Committee Machine Potential for Oxygen-containing Organic Compounds (2403.01158v1)

Published 2 Mar 2024 in cond-mat.mtrl-sci and cs.LG

Abstract: Understanding the pivotal role of oxygen-containing organic compounds in serving as an energy source for living organisms and contributing to protein formation is crucial in the field of biochemistry. This study addresses the challenge of comprehending protein-protein interactions (PPI) and developing predicitive models for proteins and organic compounds, with a specific focus on quantifying their binding affinity. Here, we introduce the active Bayesian Committee Machine (BCM) potential, specifically designed to predict oxygen-containing organic compounds within eight groups of CHO. The BCM potential adopts a committee-based approach to tackle scalability issues associated with kernel regressors, particularly when dealing with large datasets. Its adaptable structure allows for efficient and cost-effective expansion, maintaing both transferability and scalability. Through systematic benchmarking, we position the sparse BCM potential as a promising contender in the pursuit of a universal machine learning potential.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. J. R. Bock and D. A. Gough, Bioinformatics 17, 455 (2001).
  2. L. Burger and E. van Nimwegen, Molecular Systems Biology 4, 165 (2008).
  3. A. Vangone and A. M. J. J. Bonvin, eLife 4, e07454 (2015).
  4. S. Liu, C. Liu,  and L. Deng, “Machine learning approaches for protein–protein interaction hot spot prediction: Progress and comparative assessment,”  (2018).
  5. Z. Guo and R. Yamaguchi, Frontiers in Bioinformatics 2 (2022).
  6. T. Siebenmorgen and M. Zacharias, WIREs Computational Molecular Science 10, e1448 (2020).
  7. V. Tresp, Neural Computation 12, 2719 (2000).
  8. S. Y. Willow and C. W. Myung, arXiv , 0001 (2024), arXiv:2402.06256v1.
  9. G. Kresse and J. Furthmüller, Computational Materials Science 6, 15 (1996).
  10. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
  11. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
  12. AUTOFORCE, “A python package for sparse gaussian process regression of the ab-initio potential energy surface,” https://github.com/amirhajibabaei/AutoForce (2023).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.