Single photon scattering from a chain of giant atoms coupled to a one-dimensional waveguide (2403.01126v1)
Abstract: We investigate coherent single-photon transport in a waveguide quantum electrodynamics structure containing multiple giant atoms. The single-photon scattering amplitudes are solved using a real-space method. The results give rise to a clear picture of the multi-channel scattering process. In the case of identical and equally-spaced giant atoms in a separate configuration, we also use the transfer-matrix method to express the scattering amplitudes in terms of compact analytical expressions, which allow us to conveniently analyze the properties of the scattering spectra. Based on these theoretical results, we find that the non-dipole effects of giant atoms, which are relevant to the design of the setup, can strongly manipulate several types of collective properties of the output fields, including the superradiant phenomenon, the multiple Fano interference, and the photonic band gap. This makes it possible to manipulate the photon transport in a more versatile way than with small atoms. We also make a proposal to probe the topological states of a chain of braided giant atoms by using photon scattering spectra, showing that waveguide quantum electrodynamics systems with giant atoms are ideal platforms to merge topological physics and on-chip quantum optics.
- J.-T. Shen and S. Fan, Opt. Lett. 30, 2001 (2005a).
- J.-T. Shen and S. Fan, Phys. Rev. Lett. 95, 213001 (2005b).
- J.-T. Shen and S. Fan, Phys. Rev. Lett. 98, 153003 (2007).
- T. Shi and C. P. Sun, Phys. Rev. B 79, 205111 (2009).
- D. Roy, Phys. Rev. Lett. 106, 053601 (2011).
- Y.-L. L. Fang and H. U. Baranger, Phys. Rev. A 91, 053845 (2015).
- Y. T. Zhu and W. Z. Jia, Phys. Rev. A 99, 063815 (2019).
- R. H. Dicke, Phys. Rev. 93, 99 (1954).
- Y.-X. Zhang and K. Mølmer, Phys. Rev. Lett. 122, 203605 (2019).
- F. Dinc and A. M. Brańczyk, Phys. Rev. Research 1, 032042 (2019).
- H. Zheng and H. U. Baranger, Phys. Rev. Lett. 110, 113601 (2013).
- I. M. Mirza and J. C. Schotland, Phys. Rev. A 94, 012302 (2016).
- W. Nie and Y.-x. Liu, Phys. Rev. Research 2, 012076 (2020).
- T. S. Tsoi and C. K. Law, Phys. Rev. A 78, 063832 (2008).
- M.-T. Cheng and Y.-Y. Song, Opt. Lett. 37, 978 (2012).
- J. Ruostekoski and J. Javanainen, Phys. Rev. A 96, 033857 (2017).
- D. Mukhopadhyay and G. S. Agarwal, Phys. Rev. A 100, 013812 (2019).
- D. Mukhopadhyay and G. S. Agarwal, Phys. Rev. A 101, 063814 (2020).
- W. Z. Jia and Q. Y. Cai, Eur. Phys. J. Plus 137, 1082 (2022).
- A. C. Santos and R. Bachelard, Phys. Rev. Lett. 130, 053601 (2023).
- W. Zhao and Z. Wang, Phys. Rev. A 101, 053855 (2020).
- W. Z. Jia and M. T. Yu, arXiv:2304.02072 .
- Q. Y. Cai and W. Z. Jia, Phys. Rev. A 104, 033710 (2021).
- S. L. Feng and W. Z. Jia, Phys. Rev. A 104, 063712 (2021).
- A. Soro and A. F. Kockum, Phys. Rev. A 105, 023712 (2022).
- D. C. Brody, J. Phys. A 47, 035305 (2013).
- Abelès, Florin, Ann. Phys. 12, 596 (1950).
- X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
- F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008).