Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric and conventional contributions of superconducting diode effect: Application to flat-band systems (2403.01080v3)

Published 2 Mar 2024 in cond-mat.supr-con

Abstract: Nonreciprocal critical supercurrents give rise to the superconducting diode effect (SDE) in noncentrosymmetric superconductors when time-reversal symmetry is broken. In this paper, we investigate the SDE in superconductors with vanishing spin-orbit coupling but featuring narrow bands near the Fermi energy -- a characteristic particularly relevant to moir\'{e} heterostructures, such as twisted bilayer graphene. Using phenomenological Ginzburg-Landau theory and self-consistent mean-field approaches, we analyze the contributions to the SDE from both conventional band dispersion and quantum geometry. While the conventional SDE arises from the asymmetric Fermi surface, we demonstrate that the quantum metric dipole generates a band quantum-geometric contribution to the SDE, even in systems with symmetric single-particle dispersion. Notably, in the flat-band limit, where the attractive interaction strength significantly exceeds the bandwidth, the contributions from quantum geometry to the supercurrent and diode effect become dominant. Our paper elucidates the conventional and quantum-geometric origins of superconducting nonreciprocity and explores their implications for flat-band superconductors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Y. Tokura and N. Nagaosa, Nature communications 9, 3740 (2018).
  2. N. Nagaosa and Y. Yanase, Annual Review of Condensed Matter Physics 15 (2023).
  3. R. Wakatsuki and N. Nagaosa, Physical Review Letters 121, 026601 (2018).
  4. K. Jiang and J. Hu, Nature Physics 18, 1145 (2022).
  5. N. F. Yuan and L. Fu, Proceedings of the National Academy of Sciences 119, e2119548119 (2022).
  6. S. Ilić and F. S. Bergeret, Physical Review Letters 128, 177001 (2022).
  7. A. Daido and Y. Yanase, Physical Review B 106, 205206 (2022).
  8. Y.-M. Xie and K. Law, Physical Review Letters 131, 016001 (2023).
  9. S. Banerjee and M. S. Scheurer, Physical Review Letters 132, 046003 (2024).
  10. S. Peotta and P. Törmä, Nature communications 6, 8944 (2015).
  11. P. Törmä, Physical Review Letters 131, 240001 (2023).
  12. S. A. Chen and K. Law, Physical Review Letters 132, 026002 (2024).
  13. Z. Han and S. A. Kivelson, Physical Review B 105, L100509 (2022).
  14. See Supplementary Material for: 1. BCS theory in the flat-band case; 2. Ginzburg-Landau theory for SDE; 3. Self-consistent mean-field study of supercurrent; 4. Application to moiré superconductors.
  15. Y. Gao and D. Xiao, Physical review letters 122, 227402 (2019).
  16. M. V. Sadovskii, Diagrammatics: lectures on selected problems in condensed matter theory (World Scientific, 2006).
  17. R. Bistritzer and A. H. MacDonald, Proceedings of the National Academy of Sciences 108, 12233 (2011).
  18. M. Xie and A. H. MacDonald, Physical review letters 124, 097601 (2020).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com