Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Magnon hydrodynamics in an atomically-thin ferromagnet (2403.01057v2)

Published 2 Mar 2024 in cond-mat.mes-hall

Abstract: Strong interactions between particles can lead to emergent collective excitations. These phenomena have been extensively established in electronic systems, but are also expected to occur for gases of neutral particles like magnons, i.e. spin waves, in magnets. In a hydrodynamic regime where magnons are strongly interacting, they can form a slow collective density mode -- in analogy to sound waves in water -- with characteristic low-frequency signatures. While such a mode has been predicted in theory, its signatures have yet to be observed experimentally. In this work, we isolate exfoliated sheets of CrCl$3$ where magnon interactions are strong, and develop a technique to measure its collective magnon dynamics via the quantum coherence of nearby Nitrogen-Vacancy (NV) centers in diamond. We find that the thermal magnetic fluctuations generated by monolayer CrCl$_3$ exhibit an anomalous temperature dependence, whereby fluctuations increase upon decreasing temperature. Our analysis suggests that this anomalous trend is a consequence of the damping rate of a low-energy magnon sound mode which sharpens as magnon interactions increase with increasing temperature. By measuring the magnetic fluctuations emitted by thin multilayer CrCl${3}$ in the presence of a variable-frequency drive field, we observe spectroscopic evidence for this two-dimensional magnon sound mode.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. R. Cuykendall and D. R. Andersen, Optics Letters 12, 542 (1987).
  2. K. Michel and F. Schwabl, Physik der kondensierten Materie 11, 144 (1970).
  3. G. F. Reiter, Physical Review 175, 631 (1968).
  4. L. Levitov and G. Falkovich, Nature Physics 12, 672 (2016).
  5. F. Schwabl and K. Michel, Physical Review B 2, 189 (1970).
  6. F. J. Dyson, Physical review 102, 1217 (1956).
  7. A. Narath, Physical Review 131, 1929 (1963).
  8. M. Kostryukova and L. Luk’yanova, Soviet Journal of Experimental and Theoretical Physics 34, 391 (1972).
  9. B. Flebus and Y. Tserkovnyak, Physical Review Letters 121, 187204 (2018).
  10. C. P. Slichter, Principles of magnetic resonance, Vol. 1 (Springer Science & Business Media, 2013).
  11. C. Topping and S. Blundell, Journal of Physics: Condensed Matter 31, 013001 (2018).
  12. P. Bruno, Phys. Rev. B 43, 6015 (1991).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com