Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Dispersive-wave-agile optical frequency division (2403.00973v1)

Published 1 Mar 2024 in physics.optics

Abstract: The remarkable frequency stability of resonant systems in the optical domain (optical cavities and atomic transitions) can be harnessed at frequency scales accessible by electronics using optical frequency division. This capability is revolutionizing technologies spanning time keeping to high-performance electrical signal sources. A version of the technique called 2-point optical frequency division (2P-OFD) is proving advantageous for application to high-performance signal sources. In 2P-OFD, an optical cavity anchors two spectral endpoints defined by lines of a frequency comb. The comb need not be self-referenced, which greatly simplifies the system architecture and reduces power requirements. Here, a 2P-OFD microwave signal source is demonstrated with record-low phase noise using a microcomb. Key to this advance is a spectral endpoint defined by a frequency agile single-mode dispersive wave that is emitted by the microcomb soliton. Moreover, the system frequency reference is a compact all-solid-state optical cavity with a record Q-factor. The results advance integrable microcomb-based signal sources into the performance realm of much larger microwave sources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
  2. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nature Photonics 5, 425–429 (2011).
  3. Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nature Photonics 11, 44–47 (2017).
  4. Nakamura, T. et al. Coherent optical clock down-conversion for microwave frequencies with 10−18superscript101810^{-18}10 start_POSTSUPERSCRIPT - 18 end_POSTSUPERSCRIPT instability. Science 368, 889–892 (2020).
  5. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator. Optics Express 19, 24387–24395 (2011).
  6. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
  7. Small-sized, ultra-low phase noise photonic microwave oscillators at x-ka bands. Optica 10, 33–34 (2023).
  8. Kudelin, I. et al. Photonic chip-based low noise microwave oscillator. arXiv preprint arXiv:2307.08937 (2023).
  9. Sun, S. et al. Integrated optical frequency division for stable microwave and mmwave generation. arXiv preprint arXiv:2305.13575 (2023).
  10. Zhao, Y. et al. All-optical frequency division on-chip using a single laser. arXiv preprint arXiv:2303.02805 (2023).
  11. Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs. Nature Communications 13, 381 (2022).
  12. Zhang, W. et al. Ultranarrow linewidth photonic-atomic laser. Laser Photonics Rev. 14, 1900293 (2020).
  13. Ji, Q.-X. et al. Integrated microcomb with broadband tunable normal and anomalous dispersion. In Nonlinear Optics, Tu1A–2 (Optica Publishing Group, 2023).
  14. Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser & Photonics Reviews 9, L23–L28 (2015).
  15. Dissipative kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
  16. Self-referenced photonic chip soliton kerr frequency comb. Light: Science & Applications 6, e16202–e16202 (2017).
  17. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
  18. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).
  19. Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 1–9 (2017).
  20. Okawachi, Y. et al. Active tuning of dispersive waves in kerr soliton combs. Optics Letters 47, 2234–2237 (2022).
  21. Yuan, Z. et al. Soliton pulse pairs at multiple colors in normal dispersion microresonators. arXiv preprint arXiv:2301.10976 (2023).
  22. Jin, N. et al. Micro-fabricated mirrors with finesse exceeding one million. Optica 9, 965–970 (2022).
  23. Guo, J. et al. Chip-based laser with 1-hertz integrated linewidth. Science advances 8, eabp9006 (2022).
  24. McLemore, C. A. et al. Miniaturizing ultrastable electromagnetic oscillators: Sub-10- 14 frequency instability from a centimeter-scale fabry-pérot cavity. Physical Review Applied 18, 054054 (2022).
  25. Optical resonators with whispering-gallery modes-part ii: applications. IEEE Journal of selected topics in quantum electronics 12, 15–32 (2006).
  26. Liu, K. et al. 36 hz integral linewidth laser based on a photonic integrated 4.0 m coil resonator. Optica 9, 770–775 (2022).
  27. Liu, Y. et al. High finesse, air-gap optical reference cavity for low noise microwave generation. In CLEO: Science and Innovations, SM2K–4 (Optica Publishing Group, 2023).
  28. Yang, Q.-F. et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 12, 1442 (2021).
  29. Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 1–8 (2020).
  30. Extending chip-based kerr-comb to visible spectrum by dispersive wave engineering. Optics Express 25, 22362–22374 (2017).
  31. Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).
  32. Stone, J. R. et al. Thermal and nonlinear dissipative-soliton dynamics in kerr-microresonator frequency combs. Phys. Rev. Lett. 121, 063902 (2018).
  33. Zhang, W. et al. Amplitude to phase conversion of ingaas pin photo-diodes for femtosecond lasers microwave signal generation. Applied Physics B 106, 301–308 (2012).
  34. Zang, J. et al. Reduction of amplitude-to-phase conversion in charge-compensated modified unitraveling carrier photodiodes. Journal of Lightwave Technology 36, 5218–5223 (2018).
  35. On timing jitter of mode locked kerr frequency combs. Opt. Express 21, 28862–28876 (2013).
  36. Quinlan, F. et al. Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains. Nature Photonics 7, 290–293 (2013).
  37. Jin, W. et al. Hertz-linewidth semiconductor lasers using cmos-ready ultra-high-q microresonators. Nature Photonics 15, 346–353 (2021).
  38. Ji, Q.-X. et al. Engineered zero-dispersion microcombs using cmos-ready photonics. Optica 10, 279–285 (2023).
  39. Jin, X. et al. Microresonator-referenced soliton microcombs with zeptosecond-level timing noise. arXiv preprint arXiv:2401.12760 (2024).
  40. Sun, S. et al. Kerr optical frequency division with integrated photonics for stable microwave and mmwave generation. arXiv preprint arXiv:2402.11772 (2024).
  41. Drever, R. et al. Laser phase and frequency stabilization using an optical resonator. Applied Physics B 31, 97–105 (1983).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com