Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nussbaum Function Based Approach for Tracking Control of Robot Manipulators (2403.00970v1)

Published 1 Mar 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This paper introduces a novel Nussbaum function-based PID control for robotic manipulators. The integration of the Nussbaum function into the PID framework provides a solution with a simple structure that effectively tackles the challenge of unknown control directions. Stability is achieved through a combination of neural network-based estimation and Lyapunov analysis, facilitating automatic gain adjustment without the need for system dynamics. Our approach offers a gain determination with minimum parameter requirements, significantly reducing the complexity and enhancing the efficiency of robotic manipulator control. The paper guarantees that all signals within the closed-loop system remain bounded. Lastly, numerical simulations validate the theoretical framework, confirming the effectiveness of the proposed control strategy in enhancing robotic manipulator control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. B. M. Yilmaz, E. Tatlicioglu, A. Savran, and M. Alci, “Self-adjusting fuzzy logic based control of robot manipulators in task space,” IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1620–1629, 2021.
  2. C. A. Lightcap and S. A. Banks, “An extended kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator,” IEEE Transactions on Control Systems Technology, vol. 18, no. 1, pp. 91–103, 2009.
  3. M. Zhu, L. Ye, and X. Ma, “Estimation-based quadratic iterative learning control for trajectory tracking of robotic manipulator with uncertain parameters,” IEEE Access, vol. 8, pp. 43 122–43 133, 2020.
  4. H. Rahimi Nohooji, A. Zaraki, and H. Voos, “Actor–critic learning based pid control for robotic manipulators,” Applied Soft Computing, vol. 151, p. 111153, 2024.
  5. I. Cervantes and J. Alvarez-Ramirez, “On the pid tracking control of robot manipulators,” Systems & control letters, vol. 42, no. 1, pp. 37–46, 2001.
  6. R. P. Borase, D. Maghade, S. Sondkar, and S. Pawar, “A review of pid control, tuning methods and applications,” International Journal of Dynamics and Control, vol. 9, pp. 818–827, 2021.
  7. S. A. Ajwad, J. Iqbal, M. I. Ullah, and A. Mehmood, “A systematic review of current and emergent manipulator control approaches,” Frontiers of mechanical engineering, vol. 10, pp. 198–210, 2015.
  8. J. Armendariz, V. Parra-Vega, R. García-Rodríguez, and S. Rosales, “Neuro-fuzzy self-tuning of pid control for semiglobal exponential tracking of robot arms,” Applied Soft Computing, vol. 25, pp. 139–148, 2014.
  9. A. Belkadi, H. Oulhadj, Y. Touati, S. A. Khan, and B. Daachi, “On the robust pid adaptive controller for exoskeletons: A particle swarm optimization based approach,” Applied Soft Computing, vol. 60, pp. 87–100, 2017.
  10. M. I. Azeez, A. Abdelhaleem, S. Elnaggar, K. A. Moustafa, and K. R. Atia, “Optimization of pid trajectory tracking controller for a 3-dof robotic manipulator using enhanced artificial bee colony algorithm,” Scientific reports, vol. 13, no. 1, p. 11164, 2023.
  11. C. Huang and C. B. Yu, “Tuning function design for nonlinear adaptive control systems with multiple unknown control directions,” Automatica, vol. 89, pp. 259–265, 2018.
  12. A. Scheinker and M. Krstić, “Minimum-seeking for clfs: Universal semiglobally stabilizing feedback under unknown control directions,” IEEE Transactions on Automatic Control, vol. 58, no. 5, pp. 1107–1122, 2012.
  13. H. E. Psillakis, “Consensus in networks of agents with unknown high-frequency gain signs and switching topology,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3993–3998, 2016.
  14. R. D. Nussbaum, “Some remarks on a conjecture in parameter adaptive control,” Systems & control letters, vol. 3, no. 5, pp. 243–246, 1983.
  15. K. Zhao, C. Wen, Y. Song, and F. L. Lewis, “Adaptive uniform performance control of strict-feedback nonlinear systems with time-varying control gain,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 2, pp. 451–461, 2022.
  16. Y. Song, X. Huang, and C. Wen, “Robust adaptive fault-tolerant pid control of mimo nonlinear systems with unknown control direction,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4876–4884, 2017.
  17. H. Habibi, H. Rahimi Nohooji, and I. Howard, “Adaptive pid control of wind turbines for power regulation with unknown control direction and actuator faults,” IEEE Access, vol. 6, pp. 37 464–37 479, 2018.
  18. Habibi, Hamed and Rahimi Nohooji, Hamed and Howard, Ian, “Backstepping nussbaum gain dynamic surface control for a class of input and state constrained systems with actuator faults,” Information Sciences, vol. 482, pp. 27–46, 2019.
  19. H. Rahimi Nohooji, I. Howard, and L. Cui, “Neural network adaptive control design for robot manipulators under velocity constraints,” Journal of the Franklin Institute, vol. 355, no. 2, pp. 693–713, 2018.
  20. C. Chen, Z. Liu, Y. Zhang, C. P. Chen, and S. Xie, “Adaptive control of mimo mechanical systems with unknown actuator nonlinearities based on the nussbaum gain approach,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 1, pp. 26–34, 2016.
  21. Chen, Ci, Liu, Zhi, Zhang, Yun, Chen, CL Philip, and Xie, Shengli, “Saturated nussbaum function based approach for robotic systems with unknown actuator dynamics,” IEEE transactions on cybernetics, vol. 46, no. 10, pp. 2311–2322, 2015.
  22. Y. P. Pane, S. P. Nageshrao, J. Kober, and R. Babuška, “Reinforcement learning based compensation methods for robot manipulators,” Engineering Applications of Artificial Intelligence, vol. 78, pp. 236–247, 2019.
  23. Q. Chen, Y. Wang, and Y. Song, “Tracking control of self-restructuring systems: a low-complexity neuroadaptive pid approach with guaranteed performance,” IEEE Transactions on Cybernetics, 2021.
  24. H. Rahimi Nohooji, “Constrained neural adaptive pid control for robot manipulators,” Journal of the Franklin Institute, vol. 357, no. 7, pp. 3907–3923, 2020.

Summary

We haven't generated a summary for this paper yet.