Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Virtual Reality for Understanding Artificial-Intelligence-driven Scientific Discovery with an Application in Quantum Optics (2403.00834v1)

Published 20 Feb 2024 in cs.HC, cs.AI, cs.GR, and quant-ph

Abstract: Generative AI models can propose solutions to scientific problems beyond human capability. To truly make conceptual contributions, researchers need to be capable of understanding the AI-generated structures and extracting the underlying concepts and ideas. When algorithms provide little explanatory reasoning alongside the output, scientists have to reverse-engineer the fundamental insights behind proposals based solely on examples. This task can be challenging as the output is often highly complex and thus not immediately accessible to humans. In this work we show how transferring part of the analysis process into an immersive Virtual Reality (VR) environment can assist researchers in developing an understanding of AI-generated solutions. We demonstrate the usefulness of VR in finding interpretable configurations of abstract graphs, representing Quantum Optics experiments. Thereby, we can manually discover new generalizations of AI-discoveries as well as new understanding in experimental quantum optics. Furthermore, it allows us to customize the search space in an informed way - as a human-in-the-loop - to achieve significantly faster subsequent discovery iterations. As concrete examples, with this technology, we discover a new resource-efficient 3-dimensional entanglement swapping scheme, as well as a 3-dimensional 4-particle Greenberger-Horne-Zeilinger-state analyzer. Our results show the potential of VR for increasing a human researcher's ability to derive knowledge from graph-based generative AI that, which is a common abstract data representation used in diverse fields of science.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. E. H. Korkut and E. Surer, Visualization in virtual reality: a systematic review, Virtual Reality 27, 1447 (2023).
  2. Z. Duer, L. Piilonen, and G. Glasson, Belle2VR: A Virtual-Reality Visualization of Subatomic Particle Physics in the Belle II Experiment, IEEE Computer Graphics and Applications 38, 33 (2018).
  3. J. Wolfartsberger, Analyzing the potential of Virtual Reality for engineering design review, Automation in Construction 104, 27 (2019).
  4. S. Qin, Q. Wang, and X. Chen, Application of virtual reality technology in nuclear device design and research, Fusion Engineering and Design 161, 111906 (2020).
  5. C. J. Bohil, B. Alicea, and F. A. Biocca, Virtual reality in neuroscience research and therapy, Nature Reviews Neuroscience 12, 752 (2011).
  6. R. J. García-Hernández and D. Kranzlmüller, NOMAD VR: Multiplatform virtual reality viewer for chemistry simulations, Computer Physics Communications 237, 230 (2019).
  7. R. P. Theart, B. Loos, and T. R. Niesler, Virtual reality assisted microscopy data visualization and colocalization analysis, BMC Bioinformatics 18, 64 (2017).
  8. C. Stefani, A. Lacy-Hulbert, and T. Skillman, ConfocalVR: Immersive Visualization for Confocal Microscopy, Journal of Molecular Biology 430, 4028 (2018).
  9. E. Baracaglia and F. P. A. Vogt, E0102-VR: Exploring the scientific potential of Virtual Reality for observational astrophysics, Astronomy and Computing 30, 100352 (2020).
  10. M. Bellgardt, C. Scheiderer, and T. W. Kuhlen, An Immersive Node-Link Visualization of Artificial Neural Networks for Machine Learning Experts, in 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR) (2020) pp. 33–36.
  11. Z. Lyu, J. Li, and B. Wang, AIive: Interactive Visualization and Sonification of Neural Networks in Virtual Reality, in 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR) (2021) pp. 251–255.
  12. A. Lanrezac, N. Férey, and M. Baaden, Wielding the power of interactive molecular simulations, WIREs Computational Molecular Science 12, e1594 (2022).
  13. M. Krenn, X. Gu, and A. Zeilinger, Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings, Physical Review Letters 119, 240403 (2017a).
  14. C. Arnold, Inside the nascent industry of AI-designed drugs, Nature Medicine 29, 1292 (2023).
  15. B. Sanchez-Lengeling and A. Aspuru-Guzik, Inverse molecular design using machine learning: Generative models for matter engineering, Science 361, 360 (2018), publisher: American Association for the Advancement of Science.
  16. A. Nigam, R. Pollice, and A. Aspuru-Guzik, Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design, Digital Discovery 1, 390 (2022), publisher: Royal Society of Chemistry.
  17. J. S. Kottmann, Molecular quantum circuit design: A graph-based approach, Quantum 7, 1073 (2023).
  18. M. Krenn, M. Erhard, and A. Zeilinger, Computer-inspired quantum experiments, Nature Reviews Physics 2, 649 (2020), number: 11 Publisher: Nature Publishing Group.
  19. H. W. De Regt and D. Dieks, A Contextual Approach to Scientific Understanding, Synthese 144, 137 (2005).
  20. H. W. De Regt, Understanding Scientific Understanding (Oxford University Press, 2017).
  21. P. Knott, A search algorithm for quantum state engineering and metrology, New Journal of Physics 18, 073033 (2016).
  22. S. Arlt, C. Ruiz-Gonzalez, and M. Krenn, Digital Discovery of a Scientific Concept at the Core of Experimental Quantum Optics (2022), arXiv:2210.09981 [quant-ph].
  23. M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nature Reviews Physics 2, 365 (2020).
  24. J. Lawrence, Rotational covariance and greenberger-horne-zeilinger theorems for three or more particles of any dimension, Phys. Rev. A 89, 012105 (2014).
  25. J.-w. Pan and A. Zeilinger, Greenberger-Horne-Zeilinger-state analyzer, Physical Review A 57, 2208 (1998).
  26. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “event-ready-detectors” bell experiment via entanglement swapping, Phys. Rev. Lett. 71, 4287 (1993).
  27. S. Bose, V. Vedral, and P. L. Knight, Multiparticle generalization of entanglement swapping, Physical Review A 57, 822 (1998).
  28. G. Csardi and T. Nepusz, The Igraph Software Package for Complex Network Research, InterJournal Complex Systems, 1695 (2005).
  29. T. Kamada and S. Kawai, An Algorithm for Drawing General Undirected Graphs, Information Processing Letters 31 (1989).
  30. P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature 440, 297 (2006), number: 7082 Publisher: Nature Publishing Group.
  31. D. Gómez-Zará, P. Schiffer, and D. Wang, The promise and pitfalls of the metaverse for science, Nature Human Behaviour 7, 1237 (2023).
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Philipp Schmidt (21 papers)
  2. Sören Arlt (7 papers)
  3. Carlos Ruiz-Gonzalez (4 papers)
  4. Xuemei Gu (17 papers)
  5. Carla Rodríguez (3 papers)
  6. Mario Krenn (74 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com