Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An iterative method for the solution of Laplace-like equations in high and very high space dimensions (2403.00682v5)

Published 1 Mar 2024 in math.NA and cs.NA

Abstract: This paper deals with the equation $-\Delta u+\mu u=f$ on high-dimensional spaces $\mathbb{R}m$, where the right-hand side $f(x)=F(Tx)$ is composed of a separable function $F$ with an integrable Fourier transform on a space of a dimension $n>m$ and a linear mapping given by a matrix $T$ of full rank and $\mu\geq 0$ is a constant. For example, the right-hand side can explicitly depend on differences $x_i-x_j$ of components of $x$. We show that the solution of this equation can be expanded into sums of functions of the same structure and develop in this framework an equally simple and fast iterative method for its computation. The method is based on the observation that in almost all cases and for large problem classes the expression $|Tty|2$ deviates on the unit sphere $|y|=1$ the less from its mean value the higher the dimension $m$ is, a concentration of measure effect. The higher the dimension $m$, the faster the iteration converges.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Dover Publications, New York (10th printing in 1972)
  2. Bachmayr, M.: Low-rank tensor methods for partial differential equations. Acta Numerica 32, 1–121 (2023)
  3. Found. Comp. Math. 15, 839–898 (2015)
  4. Appl. Comput. Harmon. Anal. 28, 131–149 (2010)
  5. IMA J. Numer. Anal. 25, 685–697 (2005)
  6. In: R. DeVore, A. Kunoth (eds.) Multiscale, Nonlinear and Adaptive Approximation. Springer, Berlin Heidelberg (2009)
  7. Found. Comp. Math. 16, 813–874 (2016)
  8. Random Structures Algorithms 22, 60–65 (2003)
  9. Ann. Inst. Statist. Math. 42, 463–474 (1990)
  10. Hackbusch, W.: www.mis.mpg.de/scicomp/EXP_SUM
  11. Hackbusch, W.: Computation of best L∞superscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT exponential sums for 1/x1𝑥1/x1 / italic_x by Remez’ algorithm. Computing and Visualization in Science 20, 1–11 (2019)
  12. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Cham (2019)
  13. De Gruyter, Berlin München Boston (2018)
  14. Cambridge University Press, Cambridge (2010)
  15. Numer. Math. 136, 841–874 (2017)
  16. Found. Comput. Math. 24, 481–537 (2024)
  17. Sturmfels, B.: Algorithms in Invariant Theory. Springer, Wien (2008)
  18. Vershynin, R.: High-Dimensional Probability. Cambridge University Press, Cambridge (2018)
  19. van der Warden, B.L.: Algebra I. Springer, Berlin Heidelberg New York (1971)
  20. Yserentant, H.: On the expansion of solutions of Laplace-like equations into traces of separable higher-dimensional functions. Numer. Math. 146, 219–238 (2020)
  21. SIAM J. Matrix Anal. Appl. 43, 464–478 (2022)

Summary

We haven't generated a summary for this paper yet.